These pages document the python code for the sPyNNaker8 module which is part of the SpiNNaker Project.
This code depends on SpiNNUtils, SpiNNMachine, SpiNNStorageHandlers, SpiNNMan, PACMAN, DataSpecification, SpiNNFrontEndCommon, sPyNNaker (Combined_documentation).
sPyNNaker8¶
Contents:
spynnaker8¶
spynnaker8 package¶
Subpackages¶
spynnaker8.external_devices package¶
Module contents¶
The spynnaker.pyNN
package contains the front end specifications
and implementation for the PyNN High-level API
(http://neuralensemble.org/trac/PyNN)
-
class
spynnaker8.external_devices.
EIEIOType
(value, key_bytes, payload_bytes, doc='')[source]¶ Bases:
enum.Enum
Possible types of EIEIO packets
-
KEY_16_BIT
= 0¶
-
KEY_32_BIT
= 2¶
-
KEY_PAYLOAD_16_BIT
= 1¶
-
KEY_PAYLOAD_32_BIT
= 3¶
-
-
class
spynnaker8.external_devices.
ExternalCochleaDevice
(n_neurons, spinnaker_link, label=None, board_address=None)[source]¶ Bases:
pacman.model.graphs.application.application_spinnaker_link_vertex.ApplicationSpiNNakerLinkVertex
,spinn_front_end_common.abstract_models.impl.provides_key_to_atom_mapping_impl.ProvidesKeyToAtomMappingImpl
Parameters:
-
class
spynnaker8.external_devices.
ExternalFPGARetinaDevice
(mode, retina_key, spinnaker_link_id, polarity, label=None, board_address=None)[source]¶ Bases:
pacman.model.graphs.application.application_spinnaker_link_vertex.ApplicationSpiNNakerLinkVertex
,spinn_front_end_common.abstract_models.abstract_send_me_multicast_commands_vertex.AbstractSendMeMulticastCommandsVertex
,spinn_front_end_common.abstract_models.abstract_provides_outgoing_partition_constraints.AbstractProvidesOutgoingPartitionConstraints
,spinn_front_end_common.abstract_models.impl.provides_key_to_atom_mapping_impl.ProvidesKeyToAtomMappingImpl
Parameters: -
DOWN_POLARITY
= 'DOWN'¶
-
MERGED_POLARITY
= 'MERGED'¶
-
MODE_128
= '128'¶
-
MODE_16
= '16'¶
-
MODE_32
= '32'¶
-
MODE_64
= '64'¶
-
UP_POLARITY
= 'UP'¶
-
get_outgoing_partition_constraints
(partition)[source]¶ Get constraints to be added to the given edge partition that comes out of this vertex.
Parameters: partition (OutgoingEdgePartition) – An edge that comes out of this vertex Returns: A list of constraints Return type: list(AbstractConstraint)
-
pause_stop_commands
¶ The commands needed when pausing or stopping simulation
Return type: iterable(MultiCastCommand)
-
start_resume_commands
¶ The commands needed when starting or resuming simulation
Return type: iterable(MultiCastCommand)
-
timed_commands
¶ The commands to be sent at given times in the simulation
Return type: iterable(MultiCastCommand)
-
-
class
spynnaker8.external_devices.
MunichRetinaDevice
(retina_key, spinnaker_link_id, position, label='MunichRetinaDevice', polarity=None, board_address=None)[source]¶ Bases:
pacman.model.graphs.application.application_spinnaker_link_vertex.ApplicationSpiNNakerLinkVertex
,spinn_front_end_common.abstract_models.abstract_send_me_multicast_commands_vertex.AbstractSendMeMulticastCommandsVertex
,spinn_front_end_common.abstract_models.abstract_provides_outgoing_partition_constraints.AbstractProvidesOutgoingPartitionConstraints
,spinn_front_end_common.abstract_models.impl.provides_key_to_atom_mapping_impl.ProvidesKeyToAtomMappingImpl
An Omnibot silicon retina device.
Parameters: -
DOWN_POLARITY
= 'DOWN'¶
-
LEFT_RETINA
= 'LEFT'¶
-
LEFT_RETINA_DISABLE
= 69¶
-
LEFT_RETINA_ENABLE
= 69¶
-
LEFT_RETINA_KEY_SET
= 67¶
-
MANAGEMENT_BIT
= 1024¶
-
MANAGEMENT_MASK
= 4294965248¶
-
MERGED_POLARITY
= 'MERGED'¶
-
RIGHT_RETINA
= 'RIGHT'¶
-
RIGHT_RETINA_DISABLE
= 70¶
-
RIGHT_RETINA_ENABLE
= 70¶
-
RIGHT_RETINA_KEY_SET
= 68¶
-
UP_POLARITY
= 'UP'¶
-
default_parameters
= {'board_address': None, 'label': 'MunichRetinaDevice', 'polarity': None}¶
-
get_outgoing_partition_constraints
(partition)[source]¶ Get constraints to be added to the given edge partition that comes out of this vertex.
Parameters: partition (OutgoingEdgePartition) – An edge that comes out of this vertex Returns: A list of constraints Return type: list(AbstractConstraint)
-
pause_stop_commands
¶ The commands needed when pausing or stopping simulation
Return type: iterable(MultiCastCommand)
-
start_resume_commands
¶ The commands needed when starting or resuming simulation
Return type: iterable(MultiCastCommand)
-
timed_commands
¶ The commands to be sent at given times in the simulation
Return type: iterable(MultiCastCommand)
-
-
class
spynnaker8.external_devices.
MunichMotorDevice
(spinnaker_link_id, board_address=None, speed=30, sample_time=4096, update_time=512, delay_time=5, delta_threshold=23, continue_if_not_different=True, label=None)[source]¶ Bases:
pacman.model.graphs.application.application_vertex.ApplicationVertex
,spinn_front_end_common.abstract_models.abstract_vertex_with_dependent_vertices.AbstractVertexWithEdgeToDependentVertices
,spinn_front_end_common.abstract_models.abstract_generates_data_specification.AbstractGeneratesDataSpecification
,spinn_front_end_common.abstract_models.abstract_provides_outgoing_partition_constraints.AbstractProvidesOutgoingPartitionConstraints
,spinn_front_end_common.abstract_models.impl.provides_key_to_atom_mapping_impl.ProvidesKeyToAtomMappingImpl
An Omnibot motor control device. This has a real vertex and an external device vertex.
Parameters: -
PARAMS_REGION
= 1¶
-
PARAMS_SIZE
= 28¶
-
SYSTEM_REGION
= 0¶
-
create_machine_vertex
(vertex_slice, resources_required, label=None, constraints=None)[source]¶ Create a machine vertex from this application vertex
Parameters: - vertex_slice (Slice or None) – The slice of atoms that the machine vertex will cover, or None to use the default slice
- resources_required (ResourceContainer) – The resources used by the machine vertex.
- label (str or None) – human readable label for the machine vertex
- constraints (iterable(AbstractConstraint)) – Constraints to be passed on to the machine vertex.
-
default_initial_values
= {}¶
-
default_parameters
= {'board_address': None, 'continue_if_not_different': True, 'delay_time': 5, 'delta_threshold': 23, 'label': None, 'sample_time': 4096, 'speed': 30, 'update_time': 512}¶
-
dependent_vertices
()[source]¶ Return the vertices which this vertex depends upon
Return type: iterable(ApplicationVertex) Return the vertices which this vertex depends upon
-
edge_partition_identifiers_for_dependent_vertex
(vertex)[source]¶ Return the dependent edge identifiers for a particular dependent vertex.
Parameters: vertex (ApplicationVertex) – Return type: iterable(str) Return the dependent edge identifier
-
generate_data_specification
(spec, placement, routing_info, machine_time_step, time_scale_factor)[source]¶ Generate a data specification.
Parameters: - spec (DataSpecificationGenerator) – The data specification to write to
- placement (Placement) – The placement the vertex is located at
Return type:
-
get_outgoing_partition_constraints
(partition)[source]¶ Get constraints to be added to the given edge partition that comes out of this vertex.
Parameters: partition (OutgoingEdgePartition) – An edge that comes out of this vertex Returns: A list of constraints Return type: list(AbstractConstraint)
-
get_resources_used_by_atoms
(vertex_slice)[source]¶ Get the separate resource requirements for a range of atoms
Parameters: vertex_slice (Slice) – the low value of atoms to calculate resources from Returns: a Resource container that contains a CPUCyclesPerTickResource, DTCMResource and SDRAMResource Return type: ResourceContainer
-
reserve_memory_regions
(spec)[source]¶ Reserve SDRAM space for memory areas:
- Area for information on what data to record
- area for start commands
- area for end commands
Parameters: spec (DataSpecificationGenerator) – The data specification to write to
-
-
class
spynnaker8.external_devices.
ArbitraryFPGADevice
(n_neurons, fpga_link_id, fpga_id, board_address=None, label=None)[source]¶ Bases:
pacman.model.graphs.application.application_fpga_vertex.ApplicationFPGAVertex
,spinn_front_end_common.abstract_models.impl.provides_key_to_atom_mapping_impl.ProvidesKeyToAtomMappingImpl
Parameters: - n_neurons – Number of neurons
- fpga_link_id –
- fpga_id –
- board_address –
- label –
-
class
spynnaker8.external_devices.
PushBotRetinaViewer
(resolution, port=0, display_max=33.0, frame_time_ms=10, decay_time_constant_ms=100)[source]¶ Bases:
threading.Thread
A viewer for the pushbot’s retina. This is a thread that can be launched in parallel with the control code.
Based on matplotlib
-
local_host
¶
-
local_port
¶
-
-
class
spynnaker8.external_devices.
ExternalDeviceLifControl
(**kwargs)[source]¶ Bases:
spynnaker.pyNN.models.neuron.abstract_pynn_neuron_model_standard.AbstractPyNNNeuronModelStandard
Abstract control module for the PushBot, based on the LIF neuron, but without spikes, and using the voltage as the output to the various devices
-
create_vertex
(n_neurons, label, constraints, spikes_per_second, ring_buffer_sigma, incoming_spike_buffer_size, n_steps_per_timestep)[source]¶ Create a vertex for a population of the model
Parameters: - n_neurons (int) – The number of neurons in the population
- label (str) – The label to give to the vertex
- constraints (list(AbstractConstraint) or None) – A list of constraints to give to the vertex, or None
Returns: An application vertex for the population
Return type:
-
-
class
spynnaker8.external_devices.
MunichIoSpiNNakerLinkProtocol
(mode, instance_key=None, uart_id=0)[source]¶ Bases:
object
Provides Multicast commands for the Munich SpiNNaker-Link protocol
Parameters: -
class
MODES
[source]¶ Bases:
enum.Enum
types of modes supported by this protocol
-
BALL_BALANCER
= 3¶
-
FREE
= 5¶
-
MY_ORO_BOTICS
= 4¶
-
PUSH_BOT
= 1¶
-
RESET_TO_DEFAULT
= 0¶
-
SPOMNIBOT
= 2¶
-
-
add_payload_logic_to_current_output_key
¶
-
bias_values_key
¶
-
configure_master_key_key
¶
-
disable_retina_key
¶
-
enable_disable_motor_key
¶
-
generic_motor0_raw_output_leak_to_0_key
¶
-
generic_motor0_raw_output_permanent_key
¶
-
generic_motor1_raw_output_leak_to_0_key
¶
-
generic_motor1_raw_output_permanent_key
¶
-
generic_motor_total_period_key
¶
-
master_slave_key
¶
-
poll_individual_sensor_continuously_key
¶
-
poll_sensors_once_key
¶
-
protocol_instance
= 0¶
-
push_bot_laser_config_active_time_key
¶
-
push_bot_laser_config_total_period_key
¶
-
push_bot_laser_set_frequency_key
¶
-
push_bot_led_back_active_time_key
¶
-
push_bot_led_front_active_time_key
¶
-
push_bot_led_set_frequency_key
¶
-
push_bot_led_total_period_key
¶
-
push_bot_motor_0_leaking_towards_zero_key
¶
-
push_bot_motor_0_permanent_key
¶
-
push_bot_motor_1_leaking_towards_zero_key
¶
-
push_bot_motor_1_permanent_key
¶
-
push_bot_speaker_config_active_time_key
¶
-
push_bot_speaker_config_total_period_key
¶
-
push_bot_speaker_set_melody_key
¶
-
push_bot_speaker_set_tone_key
¶
-
pwm_pin_output_timer_a_channel_0_ratio_key
¶
-
pwm_pin_output_timer_a_channel_1_ratio_key
¶
-
pwm_pin_output_timer_a_duration_key
¶
-
pwm_pin_output_timer_b_channel_0_ratio_key
¶
-
pwm_pin_output_timer_b_channel_1_ratio_key
¶
-
pwm_pin_output_timer_b_duration_key
¶
-
pwm_pin_output_timer_c_channel_0_ratio_key
¶
-
pwm_pin_output_timer_c_channel_1_ratio_key
¶
-
pwm_pin_output_timer_c_duration_key
¶
-
query_state_of_io_lines_key
¶
-
remove_payload_logic_to_current_output_key
¶
-
reset_retina_key
¶
-
static
sent_mode_command
()[source]¶ True if the mode command has ever been requested by any instance
-
set_mode_key
¶
-
set_output_pattern_for_payload_key
¶
-
set_payload_pins_to_high_impedance_key
¶
-
set_retina_key_key
¶
-
set_retina_transmission
(retina_key=<RetinaKey.NATIVE_128_X_128: 67108864>, retina_payload=None, time=None)[source]¶ Set the retina transmission key
Parameters: Returns: the command to send
Return type:
-
set_retina_transmission_key
¶
-
turn_off_sensor_reporting_key
¶
-
class
-
class
spynnaker8.external_devices.
PushBotLaser
[source]¶ Bases:
spynnaker.pyNN.external_devices_models.push_bot.abstract_push_bot_output_device.AbstractPushBotOutputDevice
The properties of the laser device that may be set.
-
LASER_ACTIVE_TIME
= 1¶ The active period for the laser (no larger than the total period)
-
LASER_FREQUENCY
= 2¶ The frequency of the laser
-
LASER_TOTAL_PERIOD
= 0¶ The total period for the laser
-
-
class
spynnaker8.external_devices.
PushBotLED
[source]¶ Bases:
spynnaker.pyNN.external_devices_models.push_bot.abstract_push_bot_output_device.AbstractPushBotOutputDevice
The properties of the LED device that may be set.
-
LED_BACK_ACTIVE_TIME
= 2¶
-
LED_FREQUENCY
= 3¶
-
LED_FRONT_ACTIVE_TIME
= 1¶
-
LED_TOTAL_PERIOD
= 0¶
-
-
class
spynnaker8.external_devices.
PushBotMotor
[source]¶ Bases:
spynnaker.pyNN.external_devices_models.push_bot.abstract_push_bot_output_device.AbstractPushBotOutputDevice
The properties of the motor devices that may be set. The pushbot has two motors, 0 (left) and 1 (right).
-
MOTOR_0_LEAKY
= 1¶ For motor 0, set a variable speed depending on time since event receive
-
MOTOR_0_PERMANENT
= 0¶ For motor 0, set a particular speed
-
MOTOR_1_LEAKY
= 3¶ For motor 1, set a variable speed depending on time since event receive
-
MOTOR_1_PERMANENT
= 2¶ For motor 0, set a particular speed
-
-
class
spynnaker8.external_devices.
PushBotSpeaker
[source]¶ Bases:
spynnaker.pyNN.external_devices_models.push_bot.abstract_push_bot_output_device.AbstractPushBotOutputDevice
The properties of the speaker device that may be set.
-
SPEAKER_ACTIVE_TIME
= 1¶
-
SPEAKER_MELODY
= 3¶
-
SPEAKER_TONE
= 2¶
-
SPEAKER_TOTAL_PERIOD
= 0¶
-
-
class
spynnaker8.external_devices.
PushBotRetinaResolution
[source]¶ Bases:
enum.Enum
Resolutions supported by the pushbot retina device
-
DOWNSAMPLE_16_X_16
= <RetinaKey.DOWNSAMPLE_16_X_16: 268435456>¶
-
DOWNSAMPLE_32_X_32
= <RetinaKey.DOWNSAMPLE_32_X_32: 201326592>¶
-
DOWNSAMPLE_64_X_64
= <RetinaKey.DOWNSAMPLE_64_X_64: 134217728>¶
-
NATIVE_128_X_128
= <RetinaKey.NATIVE_128_X_128: 67108864>¶
-
-
class
spynnaker8.external_devices.
PushBotLifEthernet
(**kwargs)[source]¶ Bases:
spynnaker.pyNN.external_devices_models.external_device_lif_control.ExternalDeviceLifControl
Leaky integrate and fire neuron with an exponentially decaying current input
Parameters: - protocol (MunichIoEthernetProtocol) – How to talk to the bot.
- devices (iterable(AbstractMulticastControllableDevice)) – The devices on the bot that we are interested in.
- pushbot_ip_address (str) – Where is the pushbot?
- pushbot_port (int) – (defaulted)
- tau_m (float) – LIF neuron parameter (defaulted)
- cm (float) – LIF neuron parameter (defaulted)
- v_rest (float) – LIF neuron parameter (defaulted)
- v_reset (float) – LIF neuron parameter (defaulted)
- tau_syn_E (float) – LIF neuron parameter (defaulted)
- tau_syn_I (float) – LIF neuron parameter (defaulted)
- tau_refrac (float) – LIF neuron parameter (defaulted)
- i_offset (float) – LIF neuron parameter (defaulted)
- v (float) – LIF neuron parameter (defaulted)
- isyn_exc (float) – LIF neuron parameter (defaulted)
- isyn_inh (float) – LIF neuron parameter (defaulted)
-
class
spynnaker8.external_devices.
PushBotEthernetLaserDevice
(laser, protocol, start_active_time=None, start_total_period=None, start_frequency=None, timesteps_between_send=None)[source]¶ Bases:
spynnaker.pyNN.external_devices_models.push_bot.push_bot_ethernet.push_bot_ethernet_device.PushBotEthernetDevice
,spinn_front_end_common.abstract_models.abstract_send_me_multicast_commands_vertex.AbstractSendMeMulticastCommandsVertex
,spinn_front_end_common.abstract_models.impl.provides_key_to_atom_mapping_impl.ProvidesKeyToAtomMappingImpl
The Laser of a PushBot
Parameters: - laser (PushBotLaser) – The PushBotLaser value to control
- protocol (MunichIoEthernetProtocol) – The protocol instance to get commands from
- start_active_time – The “active time” value to send at the start
- start_total_period – The “total period” value to send at the start
- start_frequency – The “frequency” to send at the start
- timesteps_between_send – The number of timesteps between sending commands to the device, or None to use the default
-
pause_stop_commands
¶ The commands needed when pausing or stopping simulation
Return type: iterable(MultiCastCommand)
-
set_command_protocol
(command_protocol)[source]¶ Set the protocol use to send setup and shutdown commands, separately from the protocol used to control the device.
Parameters: command_protocol (MunichIoSpiNNakerLinkProtocol) – The protocol to use for this device
-
start_resume_commands
¶ The commands needed when starting or resuming simulation
Return type: iterable(MultiCastCommand)
-
timed_commands
¶ The commands to be sent at given times in the simulation
Return type: iterable(MultiCastCommand)
-
class
spynnaker8.external_devices.
PushBotEthernetLEDDevice
(led, protocol, start_active_time_front=None, start_active_time_back=None, start_total_period=None, start_frequency=None, timesteps_between_send=None)[source]¶ Bases:
spynnaker.pyNN.external_devices_models.push_bot.push_bot_ethernet.push_bot_ethernet_device.PushBotEthernetDevice
,spinn_front_end_common.abstract_models.abstract_send_me_multicast_commands_vertex.AbstractSendMeMulticastCommandsVertex
,spinn_front_end_common.abstract_models.impl.provides_key_to_atom_mapping_impl.ProvidesKeyToAtomMappingImpl
The LED of a PushBot
Parameters: - led (PushBotLED) – The PushBotLED parameter to control
- protocol (MunichIoEthernetProtocol) – The protocol instance to get commands from
- start_active_time_front – The “active time” to set for the front LED at the start
- start_active_time_back – The “active time” to set for the back LED at the start
- start_total_period – The “total period” to set at the start
- start_frequency – The “frequency” to set at the start
- timesteps_between_send – The number of timesteps between sending commands to the device, or None to use the default
-
pause_stop_commands
¶ The commands needed when pausing or stopping simulation
Return type: iterable(MultiCastCommand)
-
set_command_protocol
(command_protocol)[source]¶ Set the protocol use to send setup and shutdown commands, separately from the protocol used to control the device.
Parameters: command_protocol (MunichIoSpiNNakerLinkProtocol) – The protocol to use for this device
-
start_resume_commands
¶ The commands needed when starting or resuming simulation
Return type: iterable(MultiCastCommand)
-
timed_commands
¶ The commands to be sent at given times in the simulation
Return type: iterable(MultiCastCommand)
-
class
spynnaker8.external_devices.
PushBotEthernetMotorDevice
(motor, protocol, timesteps_between_send=None)[source]¶ Bases:
spynnaker.pyNN.external_devices_models.push_bot.push_bot_ethernet.push_bot_ethernet_device.PushBotEthernetDevice
,spinn_front_end_common.abstract_models.abstract_send_me_multicast_commands_vertex.AbstractSendMeMulticastCommandsVertex
,spinn_front_end_common.abstract_models.impl.provides_key_to_atom_mapping_impl.ProvidesKeyToAtomMappingImpl
The motor of a PushBot
Parameters: - motor (PushBotMotor) – a PushBotMotor value to indicate the motor to control
- protocol (MunichIoEthernetProtocol) – The protocol used to control the device
- timesteps_between_send – The number of timesteps between sending commands to the device, or None to use the default
-
pause_stop_commands
¶ The commands needed when pausing or stopping simulation
Return type: iterable(MultiCastCommand)
-
set_command_protocol
(command_protocol)[source]¶ Set the protocol use to send setup and shutdown commands, separately from the protocol used to control the device.
Parameters: command_protocol (MunichIoSpiNNakerLinkProtocol) – The protocol to use for this device
-
start_resume_commands
¶ The commands needed when starting or resuming simulation
Return type: iterable(MultiCastCommand)
-
timed_commands
¶ The commands to be sent at given times in the simulation
Return type: iterable(MultiCastCommand)
-
class
spynnaker8.external_devices.
PushBotEthernetSpeakerDevice
(speaker, protocol, start_active_time=0, start_total_period=0, start_frequency=0, start_melody=None, timesteps_between_send=None)[source]¶ Bases:
spynnaker.pyNN.external_devices_models.push_bot.push_bot_ethernet.push_bot_ethernet_device.PushBotEthernetDevice
,spinn_front_end_common.abstract_models.abstract_send_me_multicast_commands_vertex.AbstractSendMeMulticastCommandsVertex
,spinn_front_end_common.abstract_models.impl.provides_key_to_atom_mapping_impl.ProvidesKeyToAtomMappingImpl
The Speaker of a PushBot
Parameters: - speaker (PushBotSpeaker) – The PushBotSpeaker value to control
- protocol (MunichIoEthernetProtocol) – The protocol instance to get commands from
- start_active_time – The “active time” to set at the start
- start_total_period – The “total period” to set at the start
- start_frequency – The “frequency” to set at the start
- start_melody – The “melody” to set at the start
- timesteps_between_send – The number of timesteps between sending commands to the device, or None to use the default
-
pause_stop_commands
¶ The commands needed when pausing or stopping simulation
Return type: iterable(MultiCastCommand)
-
set_command_protocol
(command_protocol)[source]¶ Set the protocol use to send setup and shutdown commands, separately from the protocol used to control the device.
Parameters: command_protocol (MunichIoSpiNNakerLinkProtocol) – The protocol to use for this device
-
start_resume_commands
¶ The commands needed when starting or resuming simulation
Return type: iterable(MultiCastCommand)
-
timed_commands
¶ The commands to be sent at given times in the simulation
Return type: iterable(MultiCastCommand)
-
class
spynnaker8.external_devices.
PushBotEthernetRetinaDevice
(protocol, resolution, pushbot_ip_address, pushbot_port=56000, injector_port=None, local_host=None, local_port=None, retina_injector_label='PushBotRetinaInjector')[source]¶ Bases:
spynnaker.pyNN.external_devices_models.push_bot.abstract_push_bot_retina_device.AbstractPushBotRetinaDevice
,spynnaker.pyNN.external_devices_models.abstract_ethernet_sensor.AbstractEthernetSensor
Parameters: - protocol (MunichIoEthernetProtocol) –
- resolution (PushBotRetinaResolution) –
- pushbot_ip_address –
- pushbot_port –
- injector_port –
- local_host –
- local_port –
- retina_injector_label –
-
get_database_connection
()[source]¶ Get a Database Connection instance that this device uses to inject packets
Return type: SpynnakerLiveSpikesConnection Return type: PushBotRetinaConnection
-
get_injector_parameters
()[source]¶ Get the parameters of the Spike Injector to use with this device
Return type: dict(str,Any)
-
class
spynnaker8.external_devices.
PushBotLifSpinnakerLink
(**kwargs)[source]¶ Bases:
spynnaker.pyNN.external_devices_models.external_device_lif_control.ExternalDeviceLifControl
Control module for a PushBot connected to a SpiNNaker Link
Parameters: - protocol (MunichIoSpiNNakerLinkProtocol) – How to talk to the bot.
- devices (iterable(AbstractMulticastControllableDevice)) – The devices on the bot that we are interested in.
- tau_m (float) – LIF neuron parameter (defaulted)
- cm (float) – LIF neuron parameter (defaulted)
- v_rest (float) – LIF neuron parameter (defaulted)
- v_reset (float) – LIF neuron parameter (defaulted)
- tau_syn_E (float) – LIF neuron parameter (defaulted)
- tau_syn_I (float) – LIF neuron parameter (defaulted)
- tau_refrac (float) – LIF neuron parameter (defaulted)
- i_offset (float) – LIF neuron parameter (defaulted)
- v (float) – LIF neuron parameter (defaulted)
- isyn_exc (float) – LIF neuron parameter (defaulted)
- isyn_inh (float) – LIF neuron parameter (defaulted)
-
class
spynnaker8.external_devices.
PushBotSpiNNakerLinkLaserDevice
(laser, protocol, spinnaker_link_id, n_neurons=1, label=None, board_address=None, start_active_time=0, start_total_period=0, start_frequency=0)[source]¶ Bases:
spynnaker.pyNN.external_devices_models.push_bot.push_bot_ethernet.push_bot_ethernet_laser_device.PushBotEthernetLaserDevice
,pacman.model.graphs.application.application_spinnaker_link_vertex.ApplicationSpiNNakerLinkVertex
The Laser of a PushBot
Parameters: - laser (PushBotLaser) – Which laser device to control
- protocol (MunichIoSpiNNakerLinkProtocol) – The protocol instance to get commands from
- spinnaker_link_id (int) – The SpiNNakerLink that the PushBot is connected to
- n_neurons (int) – The number of neurons in the device
- label (str) – A label for the device
- board_address (str) – The IP address of the board that the device is connected to
- start_active_time – The “active time” value to send at the start
- start_total_period – The “total period” value to send at the start
- start_frequency – The “frequency” to send at the start
-
default_parameters
= {'board_address': None, 'label': None, 'n_neurons': 1, 'start_active_time': 0, 'start_frequency': 0, 'start_total_period': 0}¶
-
class
spynnaker8.external_devices.
PushBotSpiNNakerLinkLEDDevice
(led, protocol, spinnaker_link_id, n_neurons=1, label=None, board_address=None, start_active_time_front=None, start_active_time_back=None, start_total_period=None, start_frequency=None)[source]¶ Bases:
spynnaker.pyNN.external_devices_models.push_bot.push_bot_ethernet.push_bot_ethernet_led_device.PushBotEthernetLEDDevice
,pacman.model.graphs.application.application_spinnaker_link_vertex.ApplicationSpiNNakerLinkVertex
The LED of a PushBot
Parameters: - led (PushBotLED) – The LED devic to control
- protocol (MunichIoSpiNNakerLinkProtocol) – The protocol instance to get commands from
- spinnaker_link_id (int) – The SpiNNakerLink connected to
- n_neurons (int) – The number of neurons in the device
- label (str) – The label of the device
- board_address (str) – The IP address of the board that the device is connected to
- start_active_time_front – The “active time” to set for the front LED at the start
- start_active_time_back – The “active time” to set for the back LED at the start
- start_total_period – The “total period” to set at the start
- start_frequency – The “frequency” to set at the start
-
default_parameters
= {'board_address': None, 'label': None, 'n_neurons': 1, 'start_active_time_back': None, 'start_active_time_front': None, 'start_frequency': None, 'start_total_period': None}¶
-
class
spynnaker8.external_devices.
PushBotSpiNNakerLinkMotorDevice
(motor, protocol, spinnaker_link_id, n_neurons=1, label=None, board_address=None)[source]¶ Bases:
spynnaker.pyNN.external_devices_models.push_bot.push_bot_ethernet.push_bot_ethernet_motor_device.PushBotEthernetMotorDevice
,pacman.model.graphs.application.application_spinnaker_link_vertex.ApplicationSpiNNakerLinkVertex
The motor of a PushBot
Parameters: - motor (PushBotMotor) – the motor to control
- protocol (MunichIoSpiNNakerLinkProtocol) – The protocol used to control the device
- spinnaker_link_id (int) – The SpiNNakerLink connected to
- n_neurons (int) – The number of neurons in the device
- label (str) – The label of the device
- board_address (str) – The IP address of the board that the device is connected to
-
default_parameters
= {'board_address': None, 'label': None, 'n_neurons': 1}¶
-
class
spynnaker8.external_devices.
PushBotSpiNNakerLinkSpeakerDevice
(speaker, protocol, spinnaker_link_id, n_neurons=1, label=None, board_address=None, start_active_time=50, start_total_period=100, start_frequency=None, start_melody=None)[source]¶ Bases:
spynnaker.pyNN.external_devices_models.push_bot.push_bot_ethernet.push_bot_ethernet_speaker_device.PushBotEthernetSpeakerDevice
,pacman.model.graphs.application.application_spinnaker_link_vertex.ApplicationSpiNNakerLinkVertex
The speaker of a PushBot
Parameters: - speaker (PushBotSpeaker) – The PushBotSpeaker value to control
- protocol (MunichIoSpiNNakerLinkProtocol) – The protocol instance to get commands from
- spinnaker_link_id (int) – The SpiNNakerLink connected to
- n_neurons (int) – The number of neurons in the device
- label (str) – The label of the device
- board_address (str) – The IP address of the board that the device is connected to
- start_active_time – The “active time” to set at the start
- start_total_period – The “total period” to set at the start
- start_frequency – The “frequency” to set at the start
- start_melody – The “melody” to set at the start
-
default_parameters
= {'board_address': None, 'label': None, 'n_neurons': 1, 'start_active_time': 50, 'start_frequency': None, 'start_melody': None, 'start_total_period': 100}¶
-
class
spynnaker8.external_devices.
PushBotSpiNNakerLinkRetinaDevice
(*args, **kwargs)[source]¶ Bases:
spynnaker.pyNN.external_devices_models.push_bot.abstract_push_bot_retina_device.AbstractPushBotRetinaDevice
,pacman.model.graphs.application.application_spinnaker_link_vertex.ApplicationSpiNNakerLinkVertex
-
default_parameters
= {'board_address': None, 'label': None}¶
-
start_resume_commands
¶ The commands needed when starting or resuming simulation
Return type: iterable(MultiCastCommand)
-
-
class
spynnaker8.external_devices.
SpynnakerLiveSpikesConnection
(receive_labels=None, send_labels=None, local_host=None, local_port=19999, live_packet_gather_label='LiveSpikeReceiver')[source]¶ Bases:
spinn_front_end_common.utilities.connections.live_event_connection.LiveEventConnection
A connection for receiving and sending live spikes from and to SpiNNaker
Parameters: - receive_labels (iterable(str)) – Labels of population from which live spikes will be received.
- send_labels (iterable(str)) – Labels of population to which live spikes will be sent
- local_host (str) – Optional specification of the local hostname or IP address of the interface to listen on
- local_port (int) – Optional specification of the local port to listen on. Must match the port that the toolchain will send the notification on (19999 by default)
-
send_spike
(label, neuron_id, send_full_keys=False)[source]¶ Send a spike from a single neuron
Parameters:
-
send_spikes
(label, neuron_ids, send_full_keys=False)[source]¶ Send a number of spikes
Parameters: - label (str) – The label of the population from which the spikes will originate
- neuron_ids (list(int)) – array-like of neuron IDs sending spikes
- send_full_keys (bool) – Determines whether to send full 32-bit keys, getting the key for each neuron from the database, or whether to send 16-bit neuron IDs directly
-
class
spynnaker8.external_devices.
SpynnakerPoissonControlConnection
(poisson_labels=None, local_host=None, local_port=19999, control_label_extension='_control')[source]¶ Bases:
spinn_front_end_common.utilities.connections.live_event_connection.LiveEventConnection
Parameters: - poisson_labels (iterable(str)) – Labels of Poisson populations to be controlled
- local_host (str) – Optional specification of the local hostname or IP address of the interface to listen on
- local_port (int) – Optional specification of the local port to listen on. Must match the port that the toolchain will send the notification on (19999 by default)
- control_label_extension (str) – The extra name added to the label of each Poisson source
-
add_init_callback
(label, init_callback)[source]¶ Add a callback to be called to initialise a vertex
Parameters: - label (str) – The label of the vertex to be notified about. Must be one of the vertices listed in the constructor
- init_callback (callable(str, int, float, float) -> None) – A function to be called to initialise the vertex. This should take as parameters the label of the vertex, the number of neurons in the population, the run time of the simulation in milliseconds, and the simulation timestep in milliseconds
-
add_pause_stop_callback
(label, pause_stop_callback)[source]¶ Add a callback for the pause and stop state of the simulation
Parameters: - label (str) – the label of the function to be sent
- pause_stop_callback (callable(str, LiveEventConnection) -> None) – A function to be called when the pause or stop message has been received. This function should take the label of the referenced vertex, and an instance of this class, which can be used to send events.
Return type:
-
add_poisson_label
(label)[source]¶ Parameters: label (str) – The label of the Poisson source population.
-
add_receive_callback
(label, live_event_callback, translate_key=False)[source]¶ Add a callback for the reception of live events from a vertex
Parameters: - label (str) – The label of the vertex to be notified about. Must be one of the vertices listed in the constructor
- live_event_callback (callable(str, int, list(int)) -> None) – A function to be called when events are received. This should take as parameters the label of the vertex, the simulation timestep when the event occurred, and an array-like of atom IDs.
- translate_key (bool) – True if the key is to be converted to an atom ID, False if the key should stay a key
-
add_start_callback
(label, start_callback)[source]¶ Add a callback for the start of the simulation
Parameters: - start_callback (callable(str, LiveEventConnection) -> None) – A function to be called when the start message has been received. This function should take the label of the referenced vertex, and an instance of this class, which can be used to send events
- label (str) – the label of the function to be sent
-
add_start_resume_callback
(label, start_resume_callback)[source]¶ Add a callback for the start and resume state of the simulation
Parameters: - label (str) – the label of the function to be sent
- start_resume_callback (callable(str, LiveEventConnection) -> None) – A function to be called when the start or resume message has been received. This function should take the label of the referenced vertex, and an instance of this class, which can be used to send events.
Return type:
-
spynnaker8.external_devices.
activate_live_output_for
(population, database_notify_host=None, database_notify_port_num=None, database_ack_port_num=None, board_address=None, port=None, host=None, tag=None, strip_sdp=True, use_prefix=False, key_prefix=None, prefix_type=None, message_type=<EIEIOType.KEY_32_BIT: 2>, right_shift=0, payload_as_time_stamps=True, notify=True, use_payload_prefix=True, payload_prefix=None, payload_right_shift=0, number_of_packets_sent_per_time_step=0)¶ Output the spikes from a given population from SpiNNaker as they occur in the simulation.
Parameters: - population (PyNNPopulationCommon) – The population to activate the live output for
- database_notify_host (str) – The hostname for the device which is listening to the database notification.
- database_ack_port_num (int) – The port number to which a external device will acknowledge that they have finished reading the database and are ready for it to start execution
- database_notify_port_num (int) – The port number to which a external device will receive the database is ready command
- board_address (str) – A fixed board address required for the tag, or None if any address is OK
- key_prefix (int or None) – the prefix to be applied to the key
- prefix_type (EIEIOPrefix) – if the prefix type is 32 bit or 16 bit
- message_type (EIEIOType) – If the message is a EIEIO command message, or an EIEIO data message with 16 bit or 32 bit keys.
- payload_as_time_stamps (bool) –
- right_shift (int) –
- use_payload_prefix (bool) –
- notify (bool) –
- payload_prefix (int or None) –
- payload_right_shift (int) –
- number_of_packets_sent_per_time_step (int) –
- port (int) – The UDP port to which the live spikes will be sent. If not specified, the port will be taken from the “live_spike_port” parameter in the “Recording” section of the sPyNNaker configuration file.
- host (str) – The host name or IP address to which the live spikes will be sent. If not specified, the host will be taken from the “live_spike_host” parameter in the “Recording” section of the sPyNNaker configuration file.
- tag (int) – The IP tag to be used for the spikes. If not specified, one will be automatically assigned
- strip_sdp (bool) – Determines if the SDP headers will be stripped from the transmitted packet.
- use_prefix (bool) – Determines if the spike packet will contain a common prefix for the spikes
- label (str) – The label of the gatherer vertex
- partition_ids (list(str)) – The names of the partitions to create edges for
-
spynnaker8.external_devices.
activate_live_output_to
(population, device)¶ Activate the output of spikes from a population to an external device. Note that all spikes will be sent to the device.
Parameters: - population (PyNNPopulationCommon) – The pyNN population object from which spikes will be sent.
- device (PyNNPopulationCommon or ApplicationVertex) – The pyNN population or external device to which the spikes will be sent.
-
spynnaker8.external_devices.
SpikeInjector
(notify=True, database_notify_host=None, database_notify_port_num=None, database_ack_port_num=None)[source]¶ Supports adding a spike injector to the application graph.
Parameters: - notify (bool) – Whether to register for notifications
- database_notify_host (str or None) – the hostname for the device which is listening to the database notification.
- database_ack_port_num (int or None) – the port number to which a external device will acknowledge that they have finished reading the database and are ready for it to start execution
- database_notify_port_num (int or None) – The port number to which a external device will receive the database is ready command
-
spynnaker8.external_devices.
register_database_notification_request
(hostname, notify_port, ack_port)[source]¶ Adds a socket system which is registered with the notification protocol
Parameters: Return type:
-
spynnaker8.external_devices.
run_forever
()[source]¶ Supports running forever in PyNN 0.8/0.9 format
Returns: returns when the application has started running on the SpiNNaker platform.
-
spynnaker8.external_devices.
add_poisson_live_rate_control
(poisson_population, control_label_extension='_control', receive_port=None, database_notify_host=None, database_notify_port_num=None, database_ack_port_num=None, notify=True, reserve_reverse_ip_tag=False)¶ Add a live rate controller to a Poisson population.
Parameters: - poisson_population (PyNNPopulationCommon) – The population to control
- control_label_extension (str) – An extension to add to the label of the Poisson source. Must match up with the equivalent in the SpynnakerPoissonControlConnection
- receive_port (int) – The port that the SpiNNaker board should listen on
- database_notify_host (str) – the hostname for the device which is listening to the database notification.
- database_ack_port_num (int) – the port number to which a external device will acknowledge that they have finished reading the database and are ready for it to start execution
- database_notify_port_num (int) – The port number to which an external device will receive the database is ready command
- notify (bool) – adds to the notification protocol if set.
- reserve_reverse_ip_tag (bool) – True if a reverse IP tag is to be used, False if SDP is to be used (default)
spynnaker8.extra_models package¶
Module contents¶
-
spynnaker8.extra_models.
IFCurDelta
¶ alias of
spynnaker.pyNN.models.neuron.builds.if_curr_delta.IFCurrDelta
-
class
spynnaker8.extra_models.
IFCurrExpCa2Adaptive
(**kwargs)[source]¶ Bases:
spynnaker.pyNN.models.neuron.abstract_pynn_neuron_model_standard.AbstractPyNNNeuronModelStandard
Model from Liu, Y. H., & Wang, X. J. (2001). Spike-frequency adaptation of a generalized leaky integrate-and-fire model neuron. Journal of Computational Neuroscience, 10(1), 25-45. doi:10.1023/A:1008916026143
Parameters: - tau_m (float) – \(\tau_m\)
- cm (float) – \(C_m\)
- v_rest (float) – \(V_{rest}\)
- v_reset (float) – \(V_{reset}\)
- v_thresh (float) – \(V_{thresh}\)
- tau_syn_E (float) – \(\tau^{syn}_e\)
- tau_syn_I (float) – \(\tau^{syn}_i\)
- tau_refrac (float) – \(\tau_{refrac}\)
- i_offset (float) – \(I_{offset}\)
- tau_ca2 (float) – \(\tau_{\mathrm{Ca}^{+2}}\)
- i_ca2 (float) – \(I_{\mathrm{Ca}^{+2}}\)
- i_alpha (float) – \(\tau_\alpha\)
- v (float) – \(V_{init}\)
- isyn_exc (float) – \(I^{syn}_e\)
- isyn_inh (float) – \(I^{syn}_i\)
-
class
spynnaker8.extra_models.
IFCondExpStoc
(**kwargs)[source]¶ Bases:
spynnaker.pyNN.models.neuron.abstract_pynn_neuron_model_standard.AbstractPyNNNeuronModelStandard
Leaky integrate and fire neuron with a stochastic threshold.
Habenschuss S, Jonke Z, Maass W. Stochastic computations in cortical microcircuit models. PLoS Computational Biology. 2013;9(11):e1003311. doi:10.1371/journal.pcbi.1003311
Parameters: - tau_m – \(\tau_m\)
- cm – \(C_m\)
- v_rest – \(V_{rest}\)
- v_reset – \(V_{reset}\)
- v_thresh – \(V_{thresh}\)
- tau_syn_E – \(\tau^{syn}_e\)
- tau_syn_I – \(\tau^{syn}_i\)
- tau_refrac – \(\tau_{refrac}\)
- i_offset – \(I_{offset}\)
- e_rev_E – \(E^{rev}_e\)
- e_rev_I – \(E^{rev}_i\)
- du_th – \(du_{thresh}\)
- tau_th – \(\tau_{thresh}\)
- v – \(V_{init}\)
- isyn_exc – \(I^{syn}_e\)
- isyn_inh – \(I^{syn}_i\)
-
spynnaker8.extra_models.
Izhikevich_cond
¶ alias of
spynnaker.pyNN.models.neuron.builds.izk_cond_exp_base.IzkCondExpBase
-
spynnaker8.extra_models.
IF_curr_dual_exp
¶ alias of
spynnaker.pyNN.models.neuron.builds.if_curr_dual_exp_base.IFCurrDualExpBase
-
spynnaker8.extra_models.
IF_curr_exp_sEMD
¶ alias of
spynnaker.pyNN.models.neuron.builds.if_curr_exp_semd_base.IFCurrExpSEMDBase
-
class
spynnaker8.extra_models.
WeightDependenceAdditiveTriplet
(w_min=0.0, w_max=1.0, A3_plus=0.01, A3_minus=0.01)[source]¶ Bases:
spynnaker.pyNN.models.neuron.plasticity.stdp.weight_dependence.weight_dependence_additive_triplet.WeightDependenceAdditiveTriplet
Parameters:
-
spynnaker8.extra_models.
PfisterSpikeTriplet
¶ alias of
spynnaker8.models.synapse_dynamics.timing_dependence.timing_dependence_pfister_spike_triplet.TimingDependencePfisterSpikeTriplet
-
spynnaker8.extra_models.
SpikeNearestPairRule
¶ alias of
spynnaker8.models.synapse_dynamics.timing_dependence.timing_dependence_spike_nearest_pair.TimingDependenceSpikeNearestPair
-
spynnaker8.extra_models.
RecurrentRule
¶ alias of
spynnaker8.models.synapse_dynamics.timing_dependence.timing_dependence_recurrent.TimingDependenceRecurrent
-
spynnaker8.extra_models.
Vogels2011Rule
¶ alias of
spynnaker8.models.synapse_dynamics.timing_dependence.timing_dependence_vogels_2011.TimingDependenceVogels2011
-
class
spynnaker8.extra_models.
SpikeSourcePoissonVariable
(rates, starts, durations=None)[source]¶ Bases:
spynnaker.pyNN.models.abstract_pynn_model.AbstractPyNNModel
-
create_vertex
(n_neurons, label, constraints, seed)[source]¶ Create a vertex for a population of the model
Parameters: - n_neurons (int) – The number of neurons in the population
- label (str) – The label to give to the vertex
- constraints (list(AbstractConstraint) or None) – A list of constraints to give to the vertex, or None
Returns: An application vertex for the population
Return type:
-
default_population_parameters
= {'seed': None}¶
-
spynnaker8.models package¶
Subpackages¶
Connectors are objects that describe how neurons in
Population
s
are connected to each other.
-
class
spynnaker8.models.connectors.
AllToAllConnector
(allow_self_connections=True, safe=True, verbose=None, callback=None)[source]¶ Bases:
spynnaker.pyNN.models.neural_projections.connectors.all_to_all_connector.AllToAllConnector
,pyNN.connectors.AllToAllConnector
Connects all cells in the presynaptic population to all cells in the postsynaptic population
Parameters: - allow_self_connections (bool) – if the connector is used to connect a Population to itself, this flag determines whether a neuron is allowed to connect to itself, or only to other neurons in the Population.
- safe (bool) – if True, check that weights and delays have valid values. If False, this check is skipped.
- verbose (bool) – Whether to output extra information about the connectivity to a CSV file
- callback (callable) –
if given, a callable that display a progress bar on the terminal.
Note
Not supported by sPyNNaker.
-
class
spynnaker8.models.connectors.
ArrayConnector
(array, safe=True, callback=None, verbose=False)[source]¶ Bases:
spynnaker.pyNN.models.neural_projections.connectors.array_connector.ArrayConnector
Make connections using an array of integers based on the IDs of the neurons in the pre- and post-populations.
Parameters: - array (ndarray(2, uint8)) – an array of integers
- safe (bool) – Whether to check that weights and delays have valid values. If False, this check is skipped.
- callback (callable) –
if given, a callable that display a progress bar on the terminal.
Note
Not supported by sPyNNaker.
- verbose (bool) – Whether to output extra information about the connectivity to a CSV file
-
class
spynnaker8.models.connectors.
CSAConnector
(cset, safe=True, callback=None, verbose=False)[source]¶ Bases:
spynnaker.pyNN.models.neural_projections.connectors.csa_connector.CSAConnector
A CSA (Connection Set Algebra, Djurfeldt 2012) connector.
Parameters: - cset (csa.connset.CSet) – a connection set description
- safe (bool) – if True, check that weights and delays have valid values. If False, this check is skipped.
- verbose (bool) – Whether to output extra information about the connectivity to a CSV file
- callback (callable) –
if given, a callable that display a progress bar on the terminal.
Note
Not supported by sPyNNaker.
-
class
spynnaker8.models.connectors.
DistanceDependentProbabilityConnector
(d_expression, allow_self_connections=True, safe=True, verbose=False, n_connections=None, rng=None, callback=None)[source]¶ Bases:
spynnaker.pyNN.models.neural_projections.connectors.distance_dependent_probability_connector.DistanceDependentProbabilityConnector
,pyNN.connectors.DistanceDependentProbabilityConnector
Make connections using a distribution which varies with distance.
Parameters: - d_expression (str) – the right-hand side of a valid python expression for
probability, involving d, e.g.
"exp(-abs(d))"
, or"d<3"
, that can be parsed byeval()
, that computes the distance dependent distribution - allow_self_connections (bool) – if the connector is used to connect a Population to itself, this flag determines whether a neuron is allowed to connect to itself, or only to other neurons in the Population.
- safe (bool) – if True, check that weights and delays have valid values. If False, this check is skipped.
- verbose (bool) – Whether to output extra information about the connectivity to a CSV file
- n_connections (int) – The number of efferent synaptic connections per neuron.
- rng (NumpyRNG) – random number generator
- callback (callable) –
if given, a callable that display a progress bar on the terminal.
Note
Not supported by sPyNNaker.
- d_expression (str) – the right-hand side of a valid python expression for
probability, involving d, e.g.
-
class
spynnaker8.models.connectors.
FixedNumberPostConnector
(n, allow_self_connections=True, safe=True, verbose=False, with_replacement=False, rng=None, callback=None)[source]¶ Bases:
spynnaker.pyNN.models.neural_projections.connectors.fixed_number_post_connector.FixedNumberPostConnector
,pyNN.connectors.FixedNumberPostConnector
PyNN connector that puts a fixed number of connections on each of the post neurons.
Parameters: - n (int) – number of random post-synaptic neurons connected to pre-neurons
- allow_self_connections (bool) – if the connector is used to connect a Population to itself, this flag determines whether a neuron is allowed to connect to itself, or only to other neurons in the Population.
- safe (bool) – Whether to check that weights and delays have valid values; if False, this check is skipped.
- verbose (bool) – Whether to output extra information about the connectivity to a CSV file
- with_replacement (bool) – if False, once a connection is made, it can’t be made again; if True, multiple connections between the same pair of neurons are allowed
- rng (NumpyRNG or None) – random number generator
- callback (callable) –
if given, a callable that display a progress bar on the terminal.
Note
Not supported by sPyNNaker.
-
class
spynnaker8.models.connectors.
FixedNumberPreConnector
(n, allow_self_connections=True, safe=True, verbose=False, with_replacement=False, rng=None, callback=None)[source]¶ Bases:
spynnaker.pyNN.models.neural_projections.connectors.fixed_number_pre_connector.FixedNumberPreConnector
,pyNN.connectors.FixedNumberPreConnector
Connects a fixed number of pre-synaptic neurons selected at random, to all post-synaptic neurons.
Parameters: - n (int) – number of random pre-synaptic neurons connected to post-neurons
- allow_self_connections (bool) – if the connector is used to connect a Population to itself, this flag determines whether a neuron is allowed to connect to itself, or only to other neurons in the Population.
- safe (bool) – Whether to check that weights and delays have valid values. If False, this check is skipped.
- verbose (bool) – Whether to output extra information about the connectivity to a CSV file
- with_replacement (bool) – if False, once a connection is made, it can’t be made again; if True, multiple connections between the same pair of neurons are allowed
- rng (NumpyRNG or None) – random number generator
- callback (callable) –
if given, a callable that display a progress bar on the terminal.
Note
Not supported by sPyNNaker.
-
class
spynnaker8.models.connectors.
FixedProbabilityConnector
(p_connect, allow_self_connections=True, safe=True, verbose=False, rng=None, callback=None)[source]¶ Bases:
spynnaker.pyNN.models.neural_projections.connectors.fixed_probability_connector.FixedProbabilityConnector
,pyNN.connectors.FixedProbabilityConnector
For each pair of pre-post cells, the connection probability is constant.
Parameters: - p_connect (float) – a number between zero and one. Each potential connection is created with this probability.
- allow_self_connections (bool) – if the connector is used to connect a Population to itself, this flag determines whether a neuron is allowed to connect to itself, or only to other neurons in the Population.
- safe (bool) – if True, check that weights and delays have valid values. If False, this check is skipped.
- space (Space) – a Space object, needed if you wish to specify distance-dependent weights or delays - not implemented
- verbose (bool) – Whether to output extra information about the connectivity to a CSV file
- rng (NumpyRNG or None) – random number generator
- callback (callable) –
if given, a callable that display a progress bar on the terminal.
Note
Not supported by sPyNNaker.
-
p_connect
¶
-
class
spynnaker8.models.connectors.
FromFileConnector
(file, distributed=False, safe=True, callback=None, verbose=False)[source]¶ Bases:
spynnaker8.models.connectors.from_list_connector.FromListConnector
,pyNN.connectors.FromFileConnector
Make connections according to a list read from a file.
Parameters: - file (str or FileIO) –
Either an open file object or the filename of a file containing a list of connections, in the format required by
FromListConnector
. Column headers, if included in the file, must be specified using a list or tuple, e.g.:# columns = ["i", "j", "weight", "delay", "U", "tau_rec"]
Note that the header requires # at the beginning of the line.
- distributed (bool) –
Basic pyNN says:
if this is True, then each node will read connections from a file called filename.x, where x is the MPI rank. This speeds up loading connections for distributed simulations.Note
Always leave this as False with sPyNNaker, which is not MPI-based.
- safe (bool) – Whether to check that weights and delays have valid values. If False, this check is skipped.
- callback (callable) –
if given, a callable that display a progress bar on the terminal.
Note
Not supported by sPyNNaker.
- verbose (bool) – Whether to output extra information about the connectivity to a CSV file
- file (str or FileIO) –
-
class
spynnaker8.models.connectors.
FromListConnector
(conn_list, safe=True, verbose=False, column_names=None, callback=None)[source]¶ Bases:
spynnaker.pyNN.models.neural_projections.connectors.from_list_connector.FromListConnector
Make connections according to a list.
Parameters: - conn_list (list(tuple(int,int,..)) or ndarray) – a list of tuples, one tuple for each connection. Each tuple should contain: (pre_idx, post_idx, p1, p2, …, pn) where pre_idx is the index (i.e. order in the Population, not the ID) of the presynaptic neuron, post_idx is the index of the postsynaptic neuron, and p1, p2, etc. are the synaptic parameters (e.g., weight, delay, plasticity parameters).
- safe (bool) – if True, check that weights and delays have valid values. If False, this check is skipped.
- verbose (bool) – Whether to output extra information about the connectivity to a CSV file
- column_names (tuple(str) or list(str) or None) – the names of the parameters p1, p2, etc. If not provided, it is assumed the parameters are weight, delay (for backwards compatibility).
- callback (callable) –
if given, a callable that display a progress bar on the terminal.
Note
Not supported by sPyNNaker.
-
class
spynnaker8.models.connectors.
IndexBasedProbabilityConnector
(index_expression, allow_self_connections=True, rng=None, safe=True, callback=None, verbose=False)[source]¶ Bases:
spynnaker.pyNN.models.neural_projections.connectors.index_based_probability_connector.IndexBasedProbabilityConnector
Create an index-based probability connector. The index_expression must depend on the indices i, j of the populations.
Parameters: - index_expression (str) – A function of the indices of the populations, written as a Python expression; the indices will be given as variables i and j when the expression is evaluated.
- allow_self_connections (bool) – allow a neuron to connect to itself
- rng (NumpyRNG or None) – random number generator
- safe (bool) – Whether to check that weights and delays have valid values. If False, this check is skipped.
- callback (callable) –
if given, a callable that display a progress bar on the terminal.
Note
Not supported by sPyNNaker.
- verbose (bool) – Whether to output extra information about the connectivity to a CSV file
-
spynnaker8.models.connectors.
FixedTotalNumberConnector
¶ alias of
spynnaker8.models.connectors.multapse_connector.MultapseConnector
-
class
spynnaker8.models.connectors.
OneToOneConnector
(safe=True, callback=None)[source]¶ Bases:
spynnaker.pyNN.models.neural_projections.connectors.one_to_one_connector.OneToOneConnector
,pyNN.connectors.OneToOneConnector
Where the pre- and postsynaptic populations have the same size, connect cell i in the presynaptic population to cell i in the postsynaptic population for all i.
Parameters: - safe (bool) – if True, check that weights and delays have valid values. If False, this check is skipped.
- callback (callable) –
a function that will be called with the fractional progress of the connection routine. An example would be progress_bar.set_level.
Note
Not supported by sPyNNaker.
-
class
spynnaker8.models.connectors.
SmallWorldConnector
(degree, rewiring, allow_self_connections=True, n_connections=None, rng=None, safe=True, callback=None, verbose=False)[source]¶ Bases:
spynnaker.pyNN.models.neural_projections.connectors.small_world_connector.SmallWorldConnector
Create a connector that uses connection statistics based on the Small World network connectivity model. Note that this is typically used from a population to itself.
Parameters: - degree (float) – the region length where nodes will be connected locally
- rewiring (float) – the probability of rewiring each edge
- allow_self_connections (bool) – if the connector is used to connect a Population to itself, this flag determines whether a neuron is allowed to connect to itself, or only to other neurons in the Population.
- n_connections (int or None) – if specified, the number of efferent synaptic connections per neuron
- rng (NumpyRNG or None) – random number generator
- safe (bool) – Whether to check that weights and delays have valid values. If False, this check is skipped.
- callback (callable) – For PyNN compatibility only.
- verbose (bool) – Whether to output extra information about the connectivity to a CSV file
-
class
spynnaker8.models.connectors.
KernelConnector
(shape_pre, shape_post, shape_kernel, weight_kernel=None, delay_kernel=None, shape_common=None, pre_sample_steps_in_post=None, pre_start_coords_in_post=None, post_sample_steps_in_pre=None, post_start_coords_in_pre=None, safe=True, space=None, verbose=False, callback=None)[source]¶ Bases:
spynnaker.pyNN.models.neural_projections.connectors.kernel_connector.KernelConnector
Where the pre- and post-synaptic populations are considered as a 2D array. Connect every post(row, col) neuron to many pre(row, col, kernel) through a (kernel) set of weights and/or delays.
TODO
Should these include allow_self_connections and with_replacement?
Parameters: - shape_pre (tuple(int,int)) – 2D shape of the pre population (rows/height, cols/width, usually the input image shape)
- shape_post (tuple(int,int)) – 2D shape of the post population (rows/height, cols/width)
- shape_kernel (tuple(int,int)) – 2D shape of the kernel (rows/height, cols/width)
- weight_kernel (ndarray or NumpyRNG or int or float or list(int) or list(float) or None) – (optional) 2D matrix of size shape_kernel describing the weights
- delay_kernel (ndarray or NumpyRNG or int or float or list(int) or list(float) or None) – (optional) 2D matrix of size shape_kernel describing the delays
- shape_common (tuple(int,int)) – (optional) 2D shape of common coordinate system (for both pre and post, usually the input image sizes)
- pre_sample_steps_in_post (tuple(int,int)) – (optional) Sampling steps/jumps for pre pop \(\Leftrightarrow\) \((\mathsf{step}_x, \mathsf{step}_y)\)
- pre_start_coords_in_post (tuple(int,int)) – (optional) Starting row/col for pre sampling \(\Leftrightarrow\) \((\mathsf{offset}_x, \mathsf{offset}_y)\)
- post_sample_steps_in_pre (tuple(int,int)) – (optional) Sampling steps/jumps for post pop \(\Leftrightarrow\) \((\mathsf{step}_x, \mathsf{step}_y)\)
- post_start_coords_in_pre (tuple(int,int)) – (optional) Starting row/col for post sampling \(\Leftrightarrow\) \((\mathsf{offset}_x, \mathsf{offset}_y)\)
- safe (bool) – Whether to check that weights and delays have valid values. If False, this check is skipped.
- space (Space) – Currently ignored; for future compatibility.
- verbose (bool) – Whether to output extra information about the connectivity to a CSV file
- callback (callable) – (ignored)
-
class
spynnaker8.models.populations.
Assembly
(*populations, **kwargs)[source]¶ Bases:
pyNN.common.populations.Assembly
A group of neurons, may be heterogeneous, in contrast to a Population where all the neurons are of the same type.
Parameters: - populations (Population or PopulationView) – the populations or views to form the assembly out of
- kwargs – may contain label (a string describing the assembly)
Create an Assembly of Populations and/or PopulationViews.
-
class
spynnaker8.models.populations.
IDMixin
(population, id)[source]¶ Bases:
object
Instead of storing IDs as integers, we store them as ID objects, which allows a syntax like:
p[3,4].tau_m = 20.0
where
p
is a Population object.Parameters: - population (Population) –
- id (int) –
-
as_view
()[source]¶ Return a PopulationView containing just this cell.
Return type: PopulationView
-
celltype
¶ Return type: AbstractPyNNModel
-
get_initial_value
(variable)[source]¶ Get the initial value of a state variable of the cell.
Parameters: variable (str) – The name of the variable Return type: float
-
inject
(current_source)[source]¶ Inject current from a current source object into the cell.
Parameters: current_source (NeuronCurrentSource) –
-
position
¶ Return the cell position in 3D space. Cell positions are stored in an array in the parent Population, if any, or within the ID object otherwise. Positions are generated the first time they are requested and then cached.
Return type: ndarray
-
record
(variables, to_file=None, sampling_interval=None)[source]¶ Record the given variable(s) of this cell.
Parameters: - variables (str or list(str)) – either a single variable name or a list of variable names. For a given celltype class, celltype.recordable contains a list of variables that can be recorded for that celltype.
- to_file (io or rawio or str) – If specified, should be a Neo IO instance and write_data() will be automatically called when end() is called.
- sampling_interval (int) – should be a value in milliseconds, and an integer multiple of the simulation timestep.
-
class
spynnaker8.models.populations.
Population
(size, cellclass, cellparams=None, structure=None, initial_values=None, label=None, constraints=None, additional_parameters=None)[source]¶ Bases:
spynnaker.pyNN.models.pynn_population_common.PyNNPopulationCommon
,spynnaker8.models.recorder.Recorder
,spynnaker8.models.populations.population_base.PopulationBase
PyNN 0.8/0.9 population object.
Parameters: - size (int) – The number of neurons in the population
- cellclass (type or AbstractPyNNModel) – The implementation of the individual neurons.
- cellparams (dict) – Parameters to pass to
cellclass
if it is a class to instantiate. - structure (BaseStructure) –
- initial_values (dict(str,float)) – Initial values of state variables
- label (str) – A label for the population
- constraints (list(AbstractConstraint)) – Any constraints on how the population is deployed to SpiNNaker.
- additional_parameters (dict(str, ..)) – Additional parameters to pass to the vertex creation function.
-
can_record
(variable)[source]¶ Determine whether variable can be recorded from this population.
Parameters: variable (str) – The variable to answer the question about Return type: bool
-
celltype
¶ Implements the PyNN expected celltype property
Returns: The celltype this property has been set to Return type: AbstractPyNNModel
-
static
create
(cellclass, cellparams=None, n=1)[source]¶ Pass through method to the constructor defined by PyNN. Create
n
cells all of the same type. Returns a Population object.Parameters: Returns: A New Population
Return type:
-
describe
(template='population_default.txt', engine='default')[source]¶ Returns a human-readable description of the population.
The output may be customized by specifying a different template together with an associated template engine (see
pyNN.descriptions
).If template is None, then a dictionary containing the template context will be returned.
Parameters: Return type:
-
find_units
(variable)[source]¶ Get the units of a variable
Parameters: variable (str) – The name of the variable Returns: The units of the variable Return type: str
-
get_data
(variables='all', gather=True, clear=False, annotations=None)[source]¶ Return a Neo Block containing the data (spikes, state variables) recorded from the Assembly.
Parameters: - variables (str or list(str)) – either a single variable name or a list of variable names. Variables must have been previously recorded, otherwise an Exception will be raised.
- gather (bool) –
Whether to collect data from all MPI nodes or just the current node.
Note
This is irrelevant on sPyNNaker, which always behaves as if this parameter is True.
- clear (bool) – Whether recorded data will be deleted from the Assembly.
- annotations (dict(str, ..)) – annotations to put on the neo block
Return type:
-
get_data_by_indexes
(variables, indexes, clear=False, annotations=None)[source]¶ Return a Neo Block containing the data (spikes, state variables) recorded from the Assembly.
Parameters: - variables (str or list(str)) – either a single variable name or a list of variable names. Variables must have been previously recorded, otherwise an Exception will be raised.
- indexes (list(int)) – List of neuron indexes to include in the
data. Clearly only neurons recording will actually have any data.
If None will be taken as all recording as in
get_data()
- clear (bool) – Whether recorded data will be deleted.
- annotations (dict(str, ..)) – annotations to put on the neo block
Return type:
-
get_initial_value
(variable, selector=None)[source]¶ See
AbstractPopulationInitializable.get_initial_value()
-
get_spike_counts
(gather=True)[source]¶ Return the number of spikes for each neuron.
Return type: ndarray
-
initialize
(**kwargs)[source]¶ Set initial values of state variables, e.g. the membrane potential. Values passed to
initialize()
may be:- single numeric values (all neurons set to the same value), or
RandomDistribution
objects, or- lists / arrays of numbers of the same size as the population mapping functions, where a mapping function accepts a single argument (the cell index) and returns a single number.
Values should be expressed in the standard PyNN units (i.e. millivolts, nanoamps, milliseconds, microsiemens, nanofarads, event per second).
Examples:
p.initialize(v=-70.0) p.initialize(v=rand_distr, gsyn_exc=0.0) p.initialize(v=lambda i: -65 + i / 10.0)
-
positions
¶ Return the position array for structured populations.
Returns: a 2D array, one row per cell. Each row is three long, for X,Y,Z Return type: ndarray
-
record
(variables, to_file=None, sampling_interval=None, indexes=None)[source]¶ Record the specified variable or variables for all cells in the Population or view.
Parameters: - variables (str or list(str)) – either a single variable name or a list of variable names. For a given celltype class, celltype.recordable contains a list of variables that can be recorded for that celltype.
- to_file (io or rawio or str) – a file to automatically record to (optional).
write_data()
will be automatically called when sim.end() is called. - sampling_interval (int) – a value in milliseconds, and an integer multiple of the simulation timestep.
- indexes (None or list(int)) – The indexes of neurons to record from. This is non-standard PyNN and equivalent to creating a view with these indexes and asking the View to record.
-
sample
(n, rng=None)[source]¶ Randomly sample n cells from the Population, and return a PopulationView object.
Parameters: Return type:
-
set
(**parameters)[source]¶ Set parameters of this population.
Parameters: parameters – The parameters to set.
-
set_initial_value
(variable, value, selector=None)[source]¶ See
AbstractPopulationInitializable.set_initial_value()
-
spinnaker_get_data
(variable)[source]¶ Public accessor for getting data as a numpy array, instead of the neo based object
Parameters: variable (str or list(str)) – either a single variable name or a list of variable names. Variables must have been previously recorded, otherwise an Exception will be raised. Returns: array of the data Return type: ndarray
-
write_data
(io, variables='all', gather=True, clear=False, annotations=None)[source]¶ Write recorded data to file, using one of the file formats supported by Neo.
Parameters: - io (io or rawio or str) – a Neo IO instance, or a string for where to put a neo instance
- variables (str or list(str)) – either a single variable name or a list of variable names. Variables must have been previously recorded, otherwise an Exception will be raised.
- gather (bool) –
Whether to bring all relevant data together.
Note
SpiNNaker always gathers.
- clear (bool) – clears the storage data if set to true after reading it back
- annotations (dict(str, ..)) – annotations to put on the neo block
-
class
spynnaker8.models.populations.
PopulationBase
[source]¶ Bases:
object
Shared methods between
Population
s andPopulationView
s.Mainly pass through and not implemented
-
all_cells
¶ An array containing the cell IDs of all neurons in the Population (all MPI nodes).
Return type: list(int)
-
get_data
(variables='all', gather=True, clear=False, annotations=None)[source]¶ Return a Neo Block containing the data(spikes, state variables) recorded from the Population.
Parameters: - variables (str or list(str)) – Either a single variable name or a list of variable names. Variables must have been previously recorded, otherwise an Exception will be raised.
- gather (bool) –
For parallel simulators, if this is True, all data will be gathered to all nodes and the Neo Block will contain data from all nodes. Otherwise, the Neo Block will contain only data from the cells simulated on the local node.
Note
SpiNNaker always gathers.
- clear (bool) – If this is True, recorded data will be deleted from the Population.
- annotations (None or dict(str, ..)) – annotations to put on the neo block
-
get_gsyn
(*args, **kwargs)[source]¶ Warning
Deprecated. Use get_data([‘gsyn_exc’, ‘gsyn_inh’]) instead.
-
get_spike_counts
(gather=True)[source]¶ Returns a dict containing the number of spikes for each neuron.
The dict keys are neuron IDs, not indices.
Parameters: gather (bool) – For parallel simulators, if this is True, all data will be gathered to all nodes and the Neo Block will contain data from all nodes. Otherwise, the Neo Block will contain only data from the cells simulated on the local node.
Note
SpiNNaker always gathers.
Return type: dict(int, int)
-
inject
(current_source)[source]¶ Connect a current source to all cells in the Population.
Warning
Currently unimplemented.
Parameters: current_source (pyNN.neuron.standardmodels.electrodes.NeuronCurrentSource) –
-
is_local
(id)[source]¶ Indicates whether the cell with the given ID exists on the local MPI node.
Return type: bool
-
local_cells
¶ An array containing the cell IDs of those neurons in the Population that exist on the local MPI node.
Return type: list(int)
-
mean_spike_count
(gather=True)[source]¶ Returns the mean number of spikes per neuron.
Parameters: gather (bool) – For parallel simulators, if this is True, all data will be gathered to all nodes and the Neo Block will contain data from all nodes. Otherwise, the Neo Block will contain only data from the cells simulated on the local node.
Note
SpiNNaker always gathers.
Return type: float
-
nearest
(position)[source]¶ Return the neuron closest to the specified position.
Warning
Currently unimplemented.
-
position_generator
¶ Note
NO PyNN description of this method.
Warning
Currently unimplemented.
-
positions
¶ Note
NO PyNN description of this method.
Warning
Currently unimplemented.
Return type: ndarray(tuple(float, float, float))
-
printSpikes
(filename, gather=True)[source]¶ Warning
Deprecated. Use write_data(file, ‘spikes’) instead.
Note
Method signature is the PyNN0.7 one
-
print_gsyn
(filename, gather=True)[source]¶ Warning
Deprecated. Use write_data(file, [‘gsyn_exc’, ‘gsyn_inh’]) instead.
Note
Method signature is the PyNN0.7 one
-
print_v
(filename, gather=True)[source]¶ Warning
Deprecated. Use write_data(file, ‘v’) instead.
Note
Method signature is the PyNN0.7 one
-
record
(variables, to_file=None, sampling_interval=None)[source]¶ Record the specified variable or variables for all cells in the Population or view.
Parameters: - variables (str or list(str)) – either a single variable name or a list of variable names. For a given celltype class, celltype.recordable contains a list of variables that can be recorded for that celltype.
- to_file (io or rawio or str) – a file to automatically record to (optional). write_data() will be automatically called when end() is called.
- sampling_interval (int) – a value in milliseconds, and an integer multiple of the simulation timestep.
-
record_gsyn
(sampling_interval=1, to_file=None)[source]¶ Warning
Deprecated. Use record([‘gsyn_exc’, ‘gsyn_inh’]) instead.
Note
Method signature is the PyNN 0.7 one with the extra non-PyNN sampling_interval and indexes
-
record_v
(sampling_interval=1, to_file=None)[source]¶ Warning
Deprecated. Use record(‘v’) instead.
Note
Method signature is the PyNN 0.7 one with the extra non-PyNN sampling_interval and indexes
-
save_positions
(file)[source]¶ Save positions to file. The output format is index x y z
Warning
Currently unimplemented.
-
structure
¶ The spatial structure of the parent Population.
Warning
Currently unimplemented.
Return type: BaseStructure
-
write_data
(io, variables='all', gather=True, clear=False, annotations=None)[source]¶ Write recorded data to file, using one of the file formats supported by Neo.
Parameters: - io (io or rawio or str) – a Neo IO instance, or a string for where to put a Neo instance
- variables (str or list(str)) – either a single variable name or a list of variable names. Variables must have been previously recorded, otherwise an Exception will be raised.
- gather (bool) –
For parallel simulators, if this is True, all data will be gathered to all nodes and the Neo Block will contain data from all nodes. Otherwise, the Neo Block will contain only data from the cells simulated on the local node. This is pointless on sPyNNaker.
Note
SpiNNaker always gathers.
- clear (bool) – clears the storage data if set to true after reading it back
- annotations (None or dict(str, ..)) – annotations to put on the Neo block
-
-
class
spynnaker8.models.populations.
PopulationView
(parent, selector, label=None)[source]¶ Bases:
spynnaker8.models.populations.population_base.PopulationBase
A view of a subset of neurons within a
Population
.In most ways, Populations and PopulationViews have the same behaviour, i.e., they can be recorded, connected with Projections, etc. It should be noted that any changes to neurons in a PopulationView will be reflected in the parent Population and vice versa.
It is possible to have views of views.
Note
Selector to Id is actually handled by
AbstractSized
.Parameters: - parent (Population or PopulationView) – the population or view to make the view from
- selector (None or slice or int or list(bool) or list(int) or ndarray(bool) or ndarray(int)) –
a slice or numpy mask array. The mask array should either be a boolean array (ideally) of the same size as the parent, or an integer array containing cell indices, i.e. if p.size == 5 then:
PopulationView(p, array([False, False, True, False, True])) PopulationView(p, array([2, 4])) PopulationView(p, slice(2, 5, 2))
will all create the same view.
- label (str) – A label for the view
-
all_cells
¶ An array containing the cell IDs of all neurons in the Population (all MPI nodes).
Return type: list(IDMixin)
-
can_record
(variable)[source]¶ Determine whether variable can be recorded from this population.
Return type: bool
-
celltype
¶ The type of neurons making up the underlying Population.
Return type: AbstractPyNNModel
-
conductance_based
¶ Indicates whether the post-synaptic response is modelled as a change in conductance or a change in current.
Return type: bool
-
describe
(template='populationview_default.txt', engine='default')[source]¶ Returns a human-readable description of the population view.
The output may be customized by specifying a different template together with an associated template engine (see pyNN.descriptions).
If template is None, then a dictionary containing the template context will be returned.
Parameters: Return type:
-
find_units
(variable)[source]¶ Get the units of a variable
Warning
NO PyNN description of this method.
Parameters: variable (str) – The name of the variable Returns: The units of the variable Return type: str
-
get
(parameter_names, gather=False, simplify=True)[source]¶ Get the values of the given parameters for every local cell in the population, or, if gather=True, for all cells in the population.
Values will be expressed in the standard PyNN units (i.e. millivolts, nanoamps, milliseconds, microsiemens, nanofarads, event per second).
-
get_data
(variables='all', gather=True, clear=False, annotations=None)[source]¶ Return a Neo Block containing the data(spikes, state variables) recorded from the Population.
Parameters: - variables (str or list(str)) – Either a single variable name or a list of variable names. Variables must have been previously recorded, otherwise an Exception will be raised.
- gather (bool) –
For parallel simulators, if gather is True, all data will be gathered to all nodes and the Neo Block will contain data from all nodes. Otherwise, the Neo Block will contain only data from the cells simulated on the local node.
Note
SpiNNaker always gathers.
- clear (bool) – If True, recorded data will be deleted from the Population.
- annotations (dict(str, ..)) – annotations to put on the neo block
Return type:
-
get_spike_counts
(gather=True)[source]¶ Returns a dict containing the number of spikes for each neuron.
The dict keys are neuron IDs, not indices.
Note
Implementation of this method is different to Population as the Populations uses PyNN 7 version of the get_spikes method which does not support indexes.
Note
SpiNNaker always gathers.
Return type: dict(int,int)
-
grandparent
¶ Returns the parent Population at the root of the tree (since the immediate parent may itself be a PopulationView).
The name “grandparent” is of course a little misleading, as it could be just the parent, or the great, great, great, …, grandparent.
Return type: Population
-
id_to_index
(id)[source]¶ Given the ID(s) of cell(s) in the PopulationView, return its / their index / indices(order in the PopulationView).
assert pv.id_to_index(pv[3]) == 3
-
index_in_grandparent
(indices)[source]¶ Given an array of indices, return the indices in the parent population at the root of the tree.
-
initial_values
¶ A dict containing the initial values of the state variables.
Return type: dict(str, ..)
-
initialize
(**initial_values)[source]¶ Set initial values of state variables, e.g. the membrane potential. Values passed to
initialize()
may be:- single numeric values (all neurons set to the same value), or
RandomDistribution
objects, or- lists / arrays of numbers of the same size as the population mapping functions, where a mapping function accepts a single argument (the cell index) and returns a single number.
Values should be expressed in the standard PyNN units( i.e. millivolts, nanoamps, milliseconds, microsiemens, nanofarads, event per second).
Examples:
p.initialize(v=-70.0) p.initialize(v=rand_distr, gsyn_exc=0.0) p.initialize(v=lambda i: -65 + i / 10.0)
-
mask
¶ The selector mask that was used to create this view.
Return type: None or slice or int or list(bool) or list(int) or ndarray(bool) or ndarray(int)
-
parent
¶ A reference to the parent Population (that this is a view of).
Return type: Population
-
record
(variables, to_file=None, sampling_interval=None)[source]¶ Record the specified variable or variables for all cells in the Population or view.
Parameters: - variables (str or list(str)) – either a single variable name, or a list of variable
names, or
all
to record everything. For a given celltype class, celltype.recordable contains a list of variables that can be recorded for that celltype. - to_file (io or rawio or str) – If specified, should be a Neo IO instance and
write_data()
will be automatically called when sim.end() is called. - sampling_interval (int) – should be a value in milliseconds, and an integer multiple of the simulation timestep.
- variables (str or list(str)) – either a single variable name, or a list of variable
names, or
-
sample
(n, rng=None)[source]¶ Randomly sample n cells from the Population view, and return a new PopulationView object.
Parameters: Return type:
-
set
(**parameters)[source]¶ Set one or more parameters for every cell in the population. Values passed to set() may be:
- single values,
RandomDistribution
objects, or- lists / arrays of values of the same size as the population mapping functions, where a mapping function accepts a single argument (the cell index) and returns a single value.
Here, a “single value” may be either a single number or a list / array of numbers (e.g. for spike times).
Values should be expressed in the standard PyNN units (i.e. millivolts, nanoamps, milliseconds, microsiemens, nanofarads, event per second).
Examples:
p.set(tau_m=20.0, v_rest=-65). p.set(spike_times=[0.3, 0.7, 0.9, 1.4]) p.set(cm=rand_distr, tau_m=lambda i: 10 + i / 10.0)
-
write_data
(io, variables='all', gather=True, clear=False, annotations=None)[source]¶ Write recorded data to file, using one of the file formats supported by Neo.
Parameters: - io (io or rawio or str) – a Neo IO instance
- variables (str or list(str)) – either a single variable name or a list of variable names. These must have been previously recorded, otherwise an Exception will be raised.
- gather (bool) –
For parallel simulators, if this is True, all data will be gathered to the master node and a single output file created there. Otherwise, a file will be written on each node, containing only data from the cells simulated on that node.
Note
SpiNNaker always gathers.
- clear (bool) – If this is True, recorded data will be deleted from the Population.
- annotations (dict(str, ..)) – should be a dict containing simple data types such as numbers and strings. The contents will be written into the output data file as metadata.
-
class
spynnaker8.models.synapse_dynamics.timing_dependence.
TimingDependenceSpikePair
(tau_plus=20.0, tau_minus=20.0, A_plus=0.01, A_minus=0.01)[source]¶ Bases:
spynnaker.pyNN.models.neuron.plasticity.stdp.timing_dependence.timing_dependence_spike_pair.TimingDependenceSpikePair
Parameters: -
A_minus
¶
-
A_plus
¶
-
-
class
spynnaker8.models.synapse_dynamics.timing_dependence.
TimingDependencePfisterSpikeTriplet
(tau_plus, tau_minus, tau_x, tau_y, A_plus=0.01, A_minus=0.01)[source]¶ Bases:
spynnaker.pyNN.models.neuron.plasticity.stdp.timing_dependence.timing_dependence_pfister_spike_triplet.TimingDependencePfisterSpikeTriplet
Parameters: -
A_minus
¶
-
A_plus
¶
-
-
class
spynnaker8.models.synapse_dynamics.timing_dependence.
TimingDependenceRecurrent
(accumulator_depression=-6, accumulator_potentiation=6, mean_pre_window=35.0, mean_post_window=35.0, dual_fsm=True, A_plus=0.01, A_minus=0.01)[source]¶ Bases:
spynnaker.pyNN.models.neuron.plasticity.stdp.timing_dependence.timing_dependence_recurrent.TimingDependenceRecurrent
Parameters: -
A_minus
¶
-
A_plus
¶
-
-
class
spynnaker8.models.synapse_dynamics.timing_dependence.
TimingDependenceSpikeNearestPair
(tau_plus=20.0, tau_minus=20.0, A_plus=0.01, A_minus=0.01)[source]¶ Bases:
spynnaker.pyNN.models.neuron.plasticity.stdp.timing_dependence.timing_dependence_spike_nearest_pair.TimingDependenceSpikeNearestPair
Parameters: -
A_minus
¶
-
A_plus
¶
-
-
class
spynnaker8.models.synapse_dynamics.weight_dependence.
WeightDependenceAdditive
(w_min=0.0, w_max=1.0)[source]¶ Bases:
spynnaker.pyNN.models.neuron.plasticity.stdp.weight_dependence.weight_dependence_additive.WeightDependenceAdditive
Parameters:
-
class
spynnaker8.models.synapse_dynamics.weight_dependence.
WeightDependenceMultiplicative
(w_min=0.0, w_max=1.0)[source]¶ Bases:
spynnaker.pyNN.models.neuron.plasticity.stdp.weight_dependence.weight_dependence_multiplicative.WeightDependenceMultiplicative
Parameters:
-
class
spynnaker8.models.synapse_dynamics.
SynapseDynamicsStatic
(weight=0.0, delay=None)[source]¶ Bases:
spynnaker.pyNN.models.neuron.synapse_dynamics.synapse_dynamics_static.SynapseDynamicsStatic
Parameters:
-
class
spynnaker8.models.synapse_dynamics.
SynapseDynamicsSTDP
(timing_dependence, weight_dependence, voltage_dependence=None, dendritic_delay_fraction=1.0, weight=0.0, delay=None, backprop_delay=True)[source]¶ Bases:
spynnaker.pyNN.models.neuron.synapse_dynamics.synapse_dynamics_stdp.SynapseDynamicsSTDP
Parameters:
-
class
spynnaker8.models.synapse_dynamics.
SynapseDynamicsStructuralStatic
(partner_selection, formation, elimination, f_rew=10000, initial_weight=0, initial_delay=1, s_max=32, seed=None, weight=0.0, delay=None)[source]¶ Bases:
spynnaker.pyNN.models.neuron.synapse_dynamics.synapse_dynamics_structural_static.SynapseDynamicsStructuralStatic
Parameters: - partner_selection (AbstractPartnerSelection) – The partner selection rule
- formation (AbstractFormation) – The formation rule
- elimination (AbstractElimination) – The elimination rule
- f_rew (int) – How many rewiring attempts will be done per second.
- initial_weight (float) – Weight assigned to a newly formed connection
- initial_delay (float or tuple(float, float)) – Delay assigned to a newly formed connection; a single value means a fixed delay value, or a tuple of two values means the delay will be chosen at random from a uniform distribution between the given values
- s_max (int) – Maximum fan-in per target layer neuron
- seed (int) – seed the random number generators
- weight (float) – The weight of connections formed by the connector
- delay (float or None) – The delay of connections formed by the connector
-
class
spynnaker8.models.synapse_dynamics.
SynapseDynamicsStructuralSTDP
(partner_selection, formation, elimination, timing_dependence=None, weight_dependence=None, voltage_dependence=None, dendritic_delay_fraction=1.0, f_rew=10000, initial_weight=0, initial_delay=1, s_max=32, seed=None, weight=0.0, delay=None, backprop_delay=True)[source]¶ Bases:
spynnaker.pyNN.models.neuron.synapse_dynamics.synapse_dynamics_structural_stdp.SynapseDynamicsStructuralSTDP
Parameters: - partner_selection (AbstractPartnerSelection) – The partner selection rule
- formation (AbstractFormation) – The formation rule
- elimination (AbstractElimination) – The elimination rule
- timing_dependence (AbstractTimingDependence) –
- weight_dependence (AbstractWeightDependence) –
- voltage_dependence (None) – The STDP voltage dependence (unsupported)
- dendritic_delay_fraction (float) – The STDP dendritic delay fraction
- f_rew (int) – How many rewiring attempts will be done per second.
- initial_weight (float) – Weight assigned to a newly formed connection
- initial_delay (float or tuple(float, float)) – Delay assigned to a newly formed connection; a single value means a fixed delay value, or a tuple of two values means the delay will be chosen at random from a uniform distribution between the given values
- s_max (int) – Maximum fan-in per target layer neuron
- seed (int) – seed the random number generators
- weight (float) – The weight of connections formed by the connector
- delay (float or None) – The delay of connections formed by the connector
Module contents¶
-
class
spynnaker8.models.
Projection
(pre_synaptic_population, post_synaptic_population, connector, synapse_type=None, source=None, receptor_type=None, space=None, label=None)[source]¶ Bases:
spynnaker.pyNN.models.pynn_projection_common.PyNNProjectionCommon
sPyNNaker 8 projection class
Parameters: - pre_synaptic_population (PopulationBase) –
- post_synaptic_population (PopulationBase) –
- connector (AbstractConnector) –
- synapse_type (AbstractStaticSynapseDynamics) –
- source (None) – Unsupported; must be None
- receptor_type (str) –
- space (Space) –
- label (str) –
-
get
(attribute_names, format, gather=True, with_address=True, multiple_synapses='last')[source]¶ Get a parameter for PyNN 0.8
Parameters: - attribute_names (str or iterable(str)) – list of attributes to gather
- format (str) –
"list"
or"array"
- gather (bool) –
gather over all nodes
Note
SpiNNaker always gathers.
- with_address (bool) – True if the source and target are to be included
- multiple_synapses (str) – What to do with the data if format=”array” and if the multiple source-target pairs with the same values exist. Currently only “last” is supported
Returns: values selected
-
post
¶ The post-population.
Return type: PopulationBase
-
pre
¶ The pre-population.
Return type: PopulationBase
-
printDelays
(file, format='list', gather=True)[source]¶ DEPRECATED
Print synaptic weights to file. In the array format, zeros are printed for non-existent connections.
-
save
(attribute_names, file, format='list', gather=True, with_address=True)[source]¶ Print synaptic attributes (weights, delays, etc.) to file. In the array format, zeros are printed for non-existent connections. Values will be expressed in the standard PyNN units (i.e., millivolts, nanoamps, milliseconds, microsiemens, nanofarads, event per second).
Parameters:
-
class
spynnaker8.models.
Recorder
(population)[source]¶ Bases:
spynnaker.pyNN.models.recording_common.RecordingCommon
Parameters: population (Population) – the population to record for -
read_in_signal
(segment, block, signal_array, data_indexes, view_indexes, variable, recording_start_time, sampling_interval, units, label)[source]¶ Reads in a data item that’s not spikes (likely v, gsyn e, gsyn i) and saves this data to the segment.
Parameters: - segment (Segment) – Segment to add data to
- block (Block) – neo block
- signal_array (ndarray) – the raw signal data
- data_indexes (list(int)) – The indexes for the recorded data
- view_indexes (list(int) or None) – The indexes for which data should be returned. If None all data (view_index = data_indexes)
- variable (str) – the variable name
- recording_start_time (float or int) – when recording started
- sampling_interval (float or int) – how often a neuron is recorded
- units (quantities.quantity.Quantity or str) – the units of the recorded value
- label (str) – human readable label
-
read_in_spikes
(segment, spikes, t, n_neurons, recording_start_time, sampling_interval, indexes, label)[source]¶ Converts the data into SpikeTrains and saves them to the segment.
Parameters: - segment (Segment) – Segment to add spikes to
- spikes (ndarray) – Spike data in raw sPyNNaker format
- t (int) – last simulation time
- n_neurons (int) – total number of neurons including ones not recording
- recording_start_time (int) – time recording started
- sampling_interval (int) – how often a neuron is recorded
- label (str) – recording elements label
-
spynnaker8.utilities package¶
Submodules¶
spynnaker8.utilities.exceptions module¶
-
exception
spynnaker8.utilities.exceptions.
DelayExtensionException
[source]¶ Bases:
spinn_front_end_common.utilities.exceptions.ConfigurationException
Raised when a delay extension vertex fails
-
exception
spynnaker8.utilities.exceptions.
FilterableException
[source]¶ Bases:
spynnaker8.utilities.exceptions.Spynnaker8Exception
Raised when it is not possible to determine if an edge should be filtered
-
exception
spynnaker8.utilities.exceptions.
InvalidParameterType
[source]¶ Bases:
spynnaker8.utilities.exceptions.Spynnaker8Exception
Raised when a parameter is not recognised
-
exception
spynnaker8.utilities.exceptions.
MemReadException
[source]¶ Bases:
spynnaker8.utilities.exceptions.Spynnaker8Exception
Raised when the pyNN front end fails to read a certain memory region
-
exception
spynnaker8.utilities.exceptions.
Spynnaker8Exception
[source]¶ Bases:
Exception
Superclass of all exceptions from the pyNN module
-
exception
spynnaker8.utilities.exceptions.
SynapticBlockGenerationException
[source]¶ Bases:
spinn_front_end_common.utilities.exceptions.ConfigurationException
Raised when the synaptic manager fails to generate a synaptic block
-
exception
spynnaker8.utilities.exceptions.
SynapticBlockReadException
[source]¶ Bases:
spinn_front_end_common.utilities.exceptions.ConfigurationException
Raised when the synaptic manager fails to read a synaptic block or convert it into readable values
-
exception
spynnaker8.utilities.exceptions.
SynapticConfigurationException
[source]¶ Bases:
spinn_front_end_common.utilities.exceptions.ConfigurationException
Raised when the synaptic manager fails for some reason
-
exception
spynnaker8.utilities.exceptions.
SynapticMaxIncomingAtomsSupportException
[source]¶ Bases:
spinn_front_end_common.utilities.exceptions.ConfigurationException
Raised when a synaptic sublist exceeds the max atoms possible to be supported
spynnaker8.utilities.neo_compare module¶
-
spynnaker8.utilities.neo_compare.
compare_analogsignal
(as1, as2, same_length=True)[source]¶ Compares two analogsignal Objects to see if they are the same
Parameters: - as1 (AnalogSignal) – first analogsignal holding list of individual analogsignal Objects
- as2 (AnalogSignal) – second analogsignal holding list of individual analogsignal Objects
- same_length (bool) – Flag to indicate if the same length of data is held, i.e., all spikes up to the same time. If False allows one trains to have additional data after the first ends. This is used to compare data extracted part way with data extracted at the end.
Raises: AssertionError – If the analogsignals are not equal
-
spynnaker8.utilities.neo_compare.
compare_blocks
(neo1, neo2, same_runs=True, same_data=True, same_length=True)[source]¶ Compares two neo Blocks to see if they hold the same data.
Parameters: - neo1 (Block) – First block to check
- neo2 (Block) – Second block to check
- same_runs (bool) – Flag to signal if blocks are the same length. If False extra segments in the larger block are ignored
- same_data (bool) – Flag to indicate if the same type of data is held, i.e., same spikes, v, gsyn_exc and gsyn_inh. If False only data in both blocks is compared
- same_length (bool) – Flag to indicate if the same length of data is held, i.e., all spikes up to the same time. If False allows one trains to have additional data after the first ends. This is used to compare data extracted part way with data extracted at the end.
Raises: AssertionError – If the blocks are not equal
-
spynnaker8.utilities.neo_compare.
compare_segments
(seg1, seg2, same_data=True, same_length=True)[source]¶ Parameters: - seg1 (Segment) – First Segment to check
- seg2 (Segment) – Second Segment to check
- same_data (bool) – Flag to indicate if the same type of data is held, i.e., same spikes, v, gsyn_exc and gsyn_inh. If False only data in both blocks is compared
- same_length (bool) – Flag to indicate if the same length of data is held, i.e., all spikes up to the same time. If False allows one trains to have additional data after the first ends. This is used to compare data extracted part way with data extracted at the end.
Raises: AssertionError – If the segments are not equal
-
spynnaker8.utilities.neo_compare.
compare_spiketrain
(spiketrain1, spiketrain2, same_length=True)[source]¶ Checks two Spiketrains have the exact same data
Parameters: - spiketrain1 (SpikeTrain) – first spiketrain
- spiketrain2 (SpikeTrain) – second spiketrain
- same_length (bool) – Flag to indicate if the same length of data is held, i.e., all spikes up to the same time. If False allows one trains to have additional spikes after the first ends. This is used to compare data extracted part way with data extracted at the end.
Return type: Raises: AssertionError – If the spiketrains are not equal
-
spynnaker8.utilities.neo_compare.
compare_spiketrains
(spiketrains1, spiketrains2, same_data=True, same_length=True)[source]¶ Check two Lists of SpikeTrains have the exact same data
Parameters: - spiketrains1 (list(SpikeTrain)) – First list SpikeTrains to compare
- spiketrains2 (list(SpikeTrain)) – Second list of SpikeTrains to compare
- same_data (bool) – Flag to indicate if the same type of data is held, i.e., same spikes, v, gsyn_exc and gsyn_inh. If False allows one or both lists to be Empty. Even if False none empty lists must be the same length
- same_length (bool) – Flag to indicate if the same length of data is held, i.e., all spikes up to the same time. If False allows one trains to have additional spikes after the first ends. This is used to compare data extracted part way with data extracted at the end.
Raises: AssertionError – If the spiketrains are not equal
spynnaker8.utilities.neo_convertor module¶
-
spynnaker8.utilities.neo_convertor.
convert_analog_signal
(signal_array, time_unit=UnitTime('millisecond', 0.001 * s, 'ms'))[source]¶ Converts part of a NEO object into told spynnaker7 format
Parameters: - signal_array (AnalogSignal) – Extended Quantities object
- time_unit (quantities.unitquantity.UnitTime) – Data time unit for time index
Return type:
-
spynnaker8.utilities.neo_convertor.
convert_data
(data, name, run=0)[source]¶ Converts the data into a numpy array in the format ID, time, value
Parameters: Return type:
-
spynnaker8.utilities.neo_convertor.
convert_data_list
(data, name, runs=None)[source]¶ Converts the data into a list of numpy arrays in the format ID, time, value
Parameters: Return type:
-
spynnaker8.utilities.neo_convertor.
convert_gsyn
(gsyn_exc, gsyn_inh)[source]¶ Converts two neo objects into the spynnaker7 format
Note
It is acceptable for both neo parameters to be the same object
Parameters: Return type:
-
spynnaker8.utilities.neo_convertor.
convert_gsyn_exc_list
(data)[source]¶ Converts the gsyn_exc into a list numpy array one per segment (all runs) in the format ID, time, value
Parameters: data (Block) – The data to convert; it must have Gsyn_exc data in it Return type: list(ndarray)
-
spynnaker8.utilities.neo_convertor.
convert_gsyn_inh_list
(data)[source]¶ Converts the gsyn_inh into a list numpy array one per segment (all runs) in the format ID, time, value
Parameters: data (Block) – The data to convert; it must have Gsyn_inh data in it Return type: list(ndarray)
-
spynnaker8.utilities.neo_convertor.
convert_spikes
(neo, run=0)[source]¶ Extracts the spikes for run one from a Neo Object
Parameters: Return type:
-
spynnaker8.utilities.neo_convertor.
convert_spiketrains
(spiketrains)[source]¶ Converts a list of spiketrains into spynnaker7 format
Parameters: spiketrains (list(SpikeTrain)) – List of SpikeTrains Return type: ndarray
-
spynnaker8.utilities.neo_convertor.
convert_v_list
(data)[source]¶ Converts the voltage into a list numpy array one per segment (all runs) in the format ID, time, value
Parameters: data (Block) – The data to convert; it must have V data in it Return type: list(ndarray)
-
spynnaker8.utilities.neo_convertor.
count_spikes
(neo)[source]¶ Help function to count the number of spikes in a list of spiketrains
Only counts run 0
Parameters: neo (Block) – Neo Object which has spikes in it Returns: The number of spikes in the first segment
-
spynnaker8.utilities.neo_convertor.
count_spiketrains
(spiketrains)[source]¶ Help function to count the number of spikes in a list of spiketrains
Parameters: spiketrains (list(SpikeTrain)) – List of SpikeTrains Returns: Total number of spikes in all the spiketrains Return type: int
Submodules¶
spynnaker8.spynnaker8_simulator_interface module¶
-
class
spynnaker8.spynnaker8_simulator_interface.
Spynnaker8SimulatorInterface
[source]¶ Bases:
spynnaker.pyNN.spynnaker_simulator_interface.SpynnakerSimulatorInterface
The API exposed by the simulator itself.
-
dt
¶ The timestep, in milliseconds.
-
mpi_rank
¶ The MPI rank of the controller node.
-
name
¶ The name of the simulator. Used to ensure PyNN recording neo blocks are correctly labelled.
-
num_processes
¶ The number of MPI worker processes.
-
recorders
¶ The recorders, used by the PyNN state object.
-
segment_counter
¶ The number of the current recording segment being generated.
-
t
¶ The current simulation time, in milliseconds.
-
spynnaker8.spynnaker_plotting module¶
Plotting tools to be used together with https://github.com/NeuralEnsemble/PyNN/blob/master/pyNN/utility/plotting.py
-
class
spynnaker8.spynnaker_plotting.
SpynnakerPanel
(*data, **options)[source]¶ Bases:
object
Represents a single panel in a multi-panel figure.
Compatible with
pyNN.utility.plotting.Frame
and can be mixed withpyNN.utility.plotting.Panel
Unlike
pyNN.utility.plotting.Panel
, Spikes are plotted faster, other data is plotted as a heatmapA panel is a Matplotlib Axes or Subplot instance. A data item may be an
AnalogSignal
, or a list ofSpikeTrain
s. The Panel will automatically choose an appropriate representation. Multiple data items may be plotted in the same panel.Valid options are any valid Matplotlib formatting options that should be applied to the Axes/Subplot, plus in addition:
- data_labels:
- a list of strings of the same length as the number of data items.
- line_properties:
- a list of dicts containing Matplotlib formatting options, of the same length as the number of data items.
Whole Neo Objects can be passed in as long as they contain a single Segment/run and only contain one type of data Whole Segments can be passed in only if they only contain one type of data
Parameters: - data (list(SpikeTrain) or AnalogSignal or ndarray or Block or Segment) – One or more data series to be plotted.
- options – Any additional information.
-
spynnaker8.spynnaker_plotting.
heat_plot_neo
(ax, signal_array, label='', **options)[source]¶ Plots neurons, times and values into a heatmap
Parameters: - ax (Axes) – An Axes in a matplotlib figure
- signal_array (AnalogSignal) – Neo Signal array Object
- label (str) – Label for the graph
- options – plotting options
-
spynnaker8.spynnaker_plotting.
heat_plot_numpy
(ax, data, label='', **options)[source]¶ Plots neurons, times and values into a heatmap
Parameters:
-
spynnaker8.spynnaker_plotting.
plot_segment
(axes, segment, label='', **options)[source]¶ Plots a segment into a plot of spikes or a heatmap
If there is more than ode type of Data in the segment options must include the name of the data to plotNote
method signature defined by pynn plotting. This allows mixing of this plotting tool and pynn’s
Parameters:
-
spynnaker8.spynnaker_plotting.
plot_spikes_numpy
(ax, spikes, label='', **options)[source]¶ Plot all spikes
Parameters:
-
spynnaker8.spynnaker_plotting.
plot_spiketrains
(ax, spiketrains, label='', **options)[source]¶ Plot all spike trains in a Segment in a raster plot.
Parameters: - ax (Axes) – An Axes in a matplotlib figure
- spiketrains (list(SpikeTrain)) – List of spiketimes
- label (str) – Label for the graph
- options – plotting options
Module contents¶
-
class
spynnaker8.
Cuboid
(width, height, depth)[source]¶ Bases:
pyNN.space.Shape
Represents a cuboidal volume within which neurons may be distributed.
- Arguments:
- height:
- extent in y direction
- width:
- extent in x direction
- depth:
- extent in z direction
-
spynnaker8.
distance
(src, tgt, mask=None, scale_factor=1.0, offset=0.0, periodic_boundaries=None)[source]¶ Return the Euclidian distance between two cells.
Parameters: - src –
- tgt –
- mask (ndarray) – allows only certain dimensions to be considered, e.g.:
* to ignore the z-dimension, use
mask=array([0,1])
* to ignore y,mask=array([0,2])
* to just consider z-distance,mask=array([2])
- scale_factor (float) – allows for different units in the pre- and post-position (the post-synaptic position is multiplied by this quantity).
- offset (float) –
- periodic_boundaries –
-
class
spynnaker8.
Grid2D
(aspect_ratio=1.0, dx=1.0, dy=1.0, x0=0.0, y0=0.0, z=0, fill_order='sequential', rng=None)[source]¶ Bases:
pyNN.space.BaseStructure
Represents a structure with neurons distributed on a 2D grid.
- Arguments:
- dx, dy:
- distances between points in the x, y directions.
- x0, y0:
- coordinates of the starting corner of the grid.
- z:
- the z-coordinate of all points in the grid.
- aspect_ratio:
- ratio of the number of grid points per side (not the ratio of the
side lengths, unless
dx == dy
) - fill_order:
- may be ‘sequential’ or ‘random’
-
generate_positions
(n)[source]¶ Calculate and return the positions of n neurons positioned according to this structure.
-
parameter_names
= ('aspect_ratio', 'dx', 'dy', 'x0', 'y0', 'z', 'fill_order')¶
-
class
spynnaker8.
Grid3D
(aspect_ratioXY=1.0, aspect_ratioXZ=1.0, dx=1.0, dy=1.0, dz=1.0, x0=0.0, y0=0.0, z0=0, fill_order='sequential', rng=None)[source]¶ Bases:
pyNN.space.BaseStructure
Represents a structure with neurons distributed on a 3D grid.
- Arguments:
- dx, dy, dz:
- distances between points in the x, y, z directions.
- x0, y0. z0:
- coordinates of the starting corner of the grid.
- aspect_ratioXY, aspect_ratioXZ:
- ratios of the number of grid points per side (not the ratio of the
side lengths, unless
dx == dy == dz
) - fill_order:
- may be ‘sequential’ or ‘random’.
If fill_order is ‘sequential’, the z-index will be filled first, then y then x, i.e. the first cell will be at (0,0,0) (given default values for the other arguments), the second at (0,0,1), etc.
-
generate_positions
(n)[source]¶ Calculate and return the positions of n neurons positioned according to this structure.
-
parameter_names
= ('aspect_ratios', 'dx', 'dy', 'dz', 'x0', 'y0', 'z0', 'fill_order')¶
-
class
spynnaker8.
Line
(dx=1.0, x0=0.0, y=0.0, z=0.0)[source]¶ Bases:
pyNN.space.BaseStructure
Represents a structure with neurons distributed evenly on a straight line.
- Arguments:
- dx:
- distance between points in the line.
- y, z,:
- y- and z-coordinates of all points in the line.
- x0:
- x-coordinate of the first point in the line.
-
generate_positions
(n)[source]¶ Calculate and return the positions of n neurons positioned according to this structure.
-
parameter_names
= ('dx', 'x0', 'y', 'z')¶
-
class
spynnaker8.
NumpyRNG
(seed=None, parallel_safe=True)[source]¶ Bases:
pyNN.random.WrappedRNG
Wrapper for the
numpy.random.RandomState
class (Mersenne Twister PRNG).-
translations
= {'binomial': ('binomial', {'n': 'n', 'p': 'p'}), 'exponential': ('exponential', {'beta': 'scale'}), 'gamma': ('gamma', {'k': 'shape', 'theta': 'scale'}), 'lognormal': ('lognormal', {'mu': 'mean', 'sigma': 'sigma'}), 'normal': ('normal', {'mu': 'loc', 'sigma': 'scale'}), 'normal_clipped': ('normal_clipped', {'mu': 'mu', 'sigma': 'sigma', 'low': 'low', 'high': 'high'}), 'normal_clipped_to_boundary': ('normal_clipped_to_boundary', {'mu': 'mu', 'sigma': 'sigma', 'low': 'low', 'high': 'high'}), 'poisson': ('poisson', {'lambda_': 'lam'}), 'uniform': ('uniform', {'low': 'low', 'high': 'high'}), 'uniform_int': ('randint', {'low': 'low', 'high': 'high'}), 'vonmises': ('vonmises', {'mu': 'mu', 'kappa': 'kappa'})}¶
-
-
class
spynnaker8.
RandomDistribution
(distribution, parameters_pos=None, rng=None, **parameters_named)[source]¶ Bases:
pyNN.random.RandomDistribution
Class which defines a next(n) method which returns an array of
n
random numbers from a given distribution.Parameters: - distribution (str) – the name of a random number distribution.
- parameters_pos (tuple or None) – parameters of the distribution, provided as a tuple. For the correct ordering, see random.available_distributions.
- rng (NumpyRNG or GSLRNG or NativeRNG or None) – the random number generator to use, if a specific one is desired (e.g., to provide a seed).
- parameters_named – parameters of the distribution, provided as keyword arguments.
Parameters may be provided either through
parameters_pos
or throughparameters_named
, but not both. All parameters must be provided, there are no default values. Parameter names are, in general, as used in Wikipedia.Examples:
>>> rd = RandomDistribution('uniform', (-70, -50)) >>> rd = RandomDistribution('normal', mu=0.5, sigma=0.1) >>> rng = NumpyRNG(seed=8658764) >>> rd = RandomDistribution('gamma', k=2.0, theta=5.0, rng=rng)
Available distributions¶ Name Parameters Comments binomial
n
,p
gamma
k
,theta
exponential
beta
lognormal
mu
,sigma
normal
mu
,sigma
normal_clipped
mu
,sigma
,low
,high
Values outside ( low
,high
) are redrawnnormal_clipped_to_boundary
mu
,sigma
,low
,high
Values below/above low
/high
are set tolow
/high
poisson
lambda_
Trailing underscore since lambda
is a Python keyworduniform
low
,high
uniform_int
low
,high
Only generates integer values vonmises
mu
,kappa
Create a new RandomDistribution.
-
class
spynnaker8.
RandomStructure
(boundary, origin=(0.0, 0.0, 0.0), rng=None)[source]¶ Bases:
pyNN.space.BaseStructure
Represents a structure with neurons distributed randomly within a given volume.
- Arguments:
- boundary - a subclass of
Shape
. origin - the coordinates (x,y,z) of the centre of the volume.
-
generate_positions
(n)[source]¶ Calculate and return the positions of n neurons positioned according to this structure.
-
parameter_names
= ('boundary', 'origin', 'rng')¶
-
class
spynnaker8.
Space
(axes=None, scale_factor=1.0, offset=0.0, periodic_boundaries=None)[source]¶ Bases:
object
Class representing a space within distances can be calculated. The space is Cartesian, may be 1-, 2- or 3-dimensional, and may have periodic boundaries in any of the dimensions.
- Arguments:
- axes:
- if not supplied, then the 3D distance is calculated. If supplied, axes should be a string containing the axes to be used, e.g. ‘x’, or ‘yz’. axes=’xyz’ is the same as axes=None.
- scale_factor:
- it may be that the pre and post populations use different units for position, e.g. degrees and µm. In this case, scale_factor can be specified, which is applied to the positions in the post-synaptic population.
- offset:
- if the origins of the coordinate systems of the pre- and post- synaptic populations are different, offset can be used to adjust for this difference. The offset is applied before any scaling.
- periodic_boundaries:
- either None, or a tuple giving the boundaries for each dimension, e.g. ((x_min, x_max), None, (z_min, z_max)).
-
AXES
= {'x': [0], 'y': [1], 'z': [2], 'xy': [0, 1], 'yz': [1, 2], 'xz': [0, 2], 'xyz': range(0, 3), None: range(0, 3)}¶
-
distances
(A, B, expand=False)[source]¶ Calculate the distance matrix between two sets of coordinates, given the topology of the current space. From http://projects.scipy.org/pipermail/numpy-discussion/2007-April/027203.html
-
class
spynnaker8.
Sphere
(radius)[source]¶ Bases:
pyNN.space.Shape
Represents a spherical volume within which neurons may be distributed.
-
class
spynnaker8.
AllToAllConnector
(allow_self_connections=True, safe=True, verbose=None, callback=None)[source]¶ Bases:
spynnaker.pyNN.models.neural_projections.connectors.all_to_all_connector.AllToAllConnector
,pyNN.connectors.AllToAllConnector
Connects all cells in the presynaptic population to all cells in the postsynaptic population
Parameters: - allow_self_connections (bool) – if the connector is used to connect a Population to itself, this flag determines whether a neuron is allowed to connect to itself, or only to other neurons in the Population.
- safe (bool) – if True, check that weights and delays have valid values. If False, this check is skipped.
- verbose (bool) – Whether to output extra information about the connectivity to a CSV file
- callback (callable) –
if given, a callable that display a progress bar on the terminal.
Note
Not supported by sPyNNaker.
-
class
spynnaker8.
ArrayConnector
(array, safe=True, callback=None, verbose=False)[source]¶ Bases:
spynnaker.pyNN.models.neural_projections.connectors.array_connector.ArrayConnector
Make connections using an array of integers based on the IDs of the neurons in the pre- and post-populations.
Parameters: - array (ndarray(2, uint8)) – an array of integers
- safe (bool) – Whether to check that weights and delays have valid values. If False, this check is skipped.
- callback (callable) –
if given, a callable that display a progress bar on the terminal.
Note
Not supported by sPyNNaker.
- verbose (bool) – Whether to output extra information about the connectivity to a CSV file
-
class
spynnaker8.
CSAConnector
(cset, safe=True, callback=None, verbose=False)[source]¶ Bases:
spynnaker.pyNN.models.neural_projections.connectors.csa_connector.CSAConnector
A CSA (Connection Set Algebra, Djurfeldt 2012) connector.
Parameters: - cset (csa.connset.CSet) – a connection set description
- safe (bool) – if True, check that weights and delays have valid values. If False, this check is skipped.
- verbose (bool) – Whether to output extra information about the connectivity to a CSV file
- callback (callable) –
if given, a callable that display a progress bar on the terminal.
Note
Not supported by sPyNNaker.
-
class
spynnaker8.
DistanceDependentProbabilityConnector
(d_expression, allow_self_connections=True, safe=True, verbose=False, n_connections=None, rng=None, callback=None)[source]¶ Bases:
spynnaker.pyNN.models.neural_projections.connectors.distance_dependent_probability_connector.DistanceDependentProbabilityConnector
,pyNN.connectors.DistanceDependentProbabilityConnector
Make connections using a distribution which varies with distance.
Parameters: - d_expression (str) – the right-hand side of a valid python expression for
probability, involving d, e.g.
"exp(-abs(d))"
, or"d<3"
, that can be parsed byeval()
, that computes the distance dependent distribution - allow_self_connections (bool) – if the connector is used to connect a Population to itself, this flag determines whether a neuron is allowed to connect to itself, or only to other neurons in the Population.
- safe (bool) – if True, check that weights and delays have valid values. If False, this check is skipped.
- verbose (bool) – Whether to output extra information about the connectivity to a CSV file
- n_connections (int) – The number of efferent synaptic connections per neuron.
- rng (NumpyRNG) – random number generator
- callback (callable) –
if given, a callable that display a progress bar on the terminal.
Note
Not supported by sPyNNaker.
- d_expression (str) – the right-hand side of a valid python expression for
probability, involving d, e.g.
-
class
spynnaker8.
FixedNumberPostConnector
(n, allow_self_connections=True, safe=True, verbose=False, with_replacement=False, rng=None, callback=None)[source]¶ Bases:
spynnaker.pyNN.models.neural_projections.connectors.fixed_number_post_connector.FixedNumberPostConnector
,pyNN.connectors.FixedNumberPostConnector
PyNN connector that puts a fixed number of connections on each of the post neurons.
Parameters: - n (int) – number of random post-synaptic neurons connected to pre-neurons
- allow_self_connections (bool) – if the connector is used to connect a Population to itself, this flag determines whether a neuron is allowed to connect to itself, or only to other neurons in the Population.
- safe (bool) – Whether to check that weights and delays have valid values; if False, this check is skipped.
- verbose (bool) – Whether to output extra information about the connectivity to a CSV file
- with_replacement (bool) – if False, once a connection is made, it can’t be made again; if True, multiple connections between the same pair of neurons are allowed
- rng (NumpyRNG or None) – random number generator
- callback (callable) –
if given, a callable that display a progress bar on the terminal.
Note
Not supported by sPyNNaker.
-
class
spynnaker8.
FixedNumberPreConnector
(n, allow_self_connections=True, safe=True, verbose=False, with_replacement=False, rng=None, callback=None)[source]¶ Bases:
spynnaker.pyNN.models.neural_projections.connectors.fixed_number_pre_connector.FixedNumberPreConnector
,pyNN.connectors.FixedNumberPreConnector
Connects a fixed number of pre-synaptic neurons selected at random, to all post-synaptic neurons.
Parameters: - n (int) – number of random pre-synaptic neurons connected to post-neurons
- allow_self_connections (bool) – if the connector is used to connect a Population to itself, this flag determines whether a neuron is allowed to connect to itself, or only to other neurons in the Population.
- safe (bool) – Whether to check that weights and delays have valid values. If False, this check is skipped.
- verbose (bool) – Whether to output extra information about the connectivity to a CSV file
- with_replacement (bool) – if False, once a connection is made, it can’t be made again; if True, multiple connections between the same pair of neurons are allowed
- rng (NumpyRNG or None) – random number generator
- callback (callable) –
if given, a callable that display a progress bar on the terminal.
Note
Not supported by sPyNNaker.
-
class
spynnaker8.
FixedProbabilityConnector
(p_connect, allow_self_connections=True, safe=True, verbose=False, rng=None, callback=None)[source]¶ Bases:
spynnaker.pyNN.models.neural_projections.connectors.fixed_probability_connector.FixedProbabilityConnector
,pyNN.connectors.FixedProbabilityConnector
For each pair of pre-post cells, the connection probability is constant.
Parameters: - p_connect (float) – a number between zero and one. Each potential connection is created with this probability.
- allow_self_connections (bool) – if the connector is used to connect a Population to itself, this flag determines whether a neuron is allowed to connect to itself, or only to other neurons in the Population.
- safe (bool) – if True, check that weights and delays have valid values. If False, this check is skipped.
- space (Space) – a Space object, needed if you wish to specify distance-dependent weights or delays - not implemented
- verbose (bool) – Whether to output extra information about the connectivity to a CSV file
- rng (NumpyRNG or None) – random number generator
- callback (callable) –
if given, a callable that display a progress bar on the terminal.
Note
Not supported by sPyNNaker.
-
p_connect
¶
-
class
spynnaker8.
FromFileConnector
(file, distributed=False, safe=True, callback=None, verbose=False)[source]¶ Bases:
spynnaker8.models.connectors.from_list_connector.FromListConnector
,pyNN.connectors.FromFileConnector
Make connections according to a list read from a file.
Parameters: - file (str or FileIO) –
Either an open file object or the filename of a file containing a list of connections, in the format required by
FromListConnector
. Column headers, if included in the file, must be specified using a list or tuple, e.g.:# columns = ["i", "j", "weight", "delay", "U", "tau_rec"]
Note that the header requires # at the beginning of the line.
- distributed (bool) –
Basic pyNN says:
if this is True, then each node will read connections from a file called filename.x, where x is the MPI rank. This speeds up loading connections for distributed simulations.Note
Always leave this as False with sPyNNaker, which is not MPI-based.
- safe (bool) – Whether to check that weights and delays have valid values. If False, this check is skipped.
- callback (callable) –
if given, a callable that display a progress bar on the terminal.
Note
Not supported by sPyNNaker.
- verbose (bool) – Whether to output extra information about the connectivity to a CSV file
- file (str or FileIO) –
-
class
spynnaker8.
FromListConnector
(conn_list, safe=True, verbose=False, column_names=None, callback=None)[source]¶ Bases:
spynnaker.pyNN.models.neural_projections.connectors.from_list_connector.FromListConnector
Make connections according to a list.
Parameters: - conn_list (list(tuple(int,int,..)) or ndarray) – a list of tuples, one tuple for each connection. Each tuple should contain: (pre_idx, post_idx, p1, p2, …, pn) where pre_idx is the index (i.e. order in the Population, not the ID) of the presynaptic neuron, post_idx is the index of the postsynaptic neuron, and p1, p2, etc. are the synaptic parameters (e.g., weight, delay, plasticity parameters).
- safe (bool) – if True, check that weights and delays have valid values. If False, this check is skipped.
- verbose (bool) – Whether to output extra information about the connectivity to a CSV file
- column_names (tuple(str) or list(str) or None) – the names of the parameters p1, p2, etc. If not provided, it is assumed the parameters are weight, delay (for backwards compatibility).
- callback (callable) –
if given, a callable that display a progress bar on the terminal.
Note
Not supported by sPyNNaker.
-
class
spynnaker8.
IndexBasedProbabilityConnector
(index_expression, allow_self_connections=True, rng=None, safe=True, callback=None, verbose=False)[source]¶ Bases:
spynnaker.pyNN.models.neural_projections.connectors.index_based_probability_connector.IndexBasedProbabilityConnector
Create an index-based probability connector. The index_expression must depend on the indices i, j of the populations.
Parameters: - index_expression (str) – A function of the indices of the populations, written as a Python expression; the indices will be given as variables i and j when the expression is evaluated.
- allow_self_connections (bool) – allow a neuron to connect to itself
- rng (NumpyRNG or None) – random number generator
- safe (bool) – Whether to check that weights and delays have valid values. If False, this check is skipped.
- callback (callable) –
if given, a callable that display a progress bar on the terminal.
Note
Not supported by sPyNNaker.
- verbose (bool) – Whether to output extra information about the connectivity to a CSV file
-
spynnaker8.
FixedTotalNumberConnector
¶ alias of
spynnaker8.models.connectors.multapse_connector.MultapseConnector
-
class
spynnaker8.
OneToOneConnector
(safe=True, callback=None)[source]¶ Bases:
spynnaker.pyNN.models.neural_projections.connectors.one_to_one_connector.OneToOneConnector
,pyNN.connectors.OneToOneConnector
Where the pre- and postsynaptic populations have the same size, connect cell i in the presynaptic population to cell i in the postsynaptic population for all i.
Parameters: - safe (bool) – if True, check that weights and delays have valid values. If False, this check is skipped.
- callback (callable) –
a function that will be called with the fractional progress of the connection routine. An example would be progress_bar.set_level.
Note
Not supported by sPyNNaker.
-
class
spynnaker8.
SmallWorldConnector
(degree, rewiring, allow_self_connections=True, n_connections=None, rng=None, safe=True, callback=None, verbose=False)[source]¶ Bases:
spynnaker.pyNN.models.neural_projections.connectors.small_world_connector.SmallWorldConnector
Create a connector that uses connection statistics based on the Small World network connectivity model. Note that this is typically used from a population to itself.
Parameters: - degree (float) – the region length where nodes will be connected locally
- rewiring (float) – the probability of rewiring each edge
- allow_self_connections (bool) – if the connector is used to connect a Population to itself, this flag determines whether a neuron is allowed to connect to itself, or only to other neurons in the Population.
- n_connections (int or None) – if specified, the number of efferent synaptic connections per neuron
- rng (NumpyRNG or None) – random number generator
- safe (bool) – Whether to check that weights and delays have valid values. If False, this check is skipped.
- callback (callable) – For PyNN compatibility only.
- verbose (bool) – Whether to output extra information about the connectivity to a CSV file
-
class
spynnaker8.
KernelConnector
(shape_pre, shape_post, shape_kernel, weight_kernel=None, delay_kernel=None, shape_common=None, pre_sample_steps_in_post=None, pre_start_coords_in_post=None, post_sample_steps_in_pre=None, post_start_coords_in_pre=None, safe=True, space=None, verbose=False, callback=None)[source]¶ Bases:
spynnaker.pyNN.models.neural_projections.connectors.kernel_connector.KernelConnector
Where the pre- and post-synaptic populations are considered as a 2D array. Connect every post(row, col) neuron to many pre(row, col, kernel) through a (kernel) set of weights and/or delays.
TODO
Should these include allow_self_connections and with_replacement?
Parameters: - shape_pre (tuple(int,int)) – 2D shape of the pre population (rows/height, cols/width, usually the input image shape)
- shape_post (tuple(int,int)) – 2D shape of the post population (rows/height, cols/width)
- shape_kernel (tuple(int,int)) – 2D shape of the kernel (rows/height, cols/width)
- weight_kernel (ndarray or NumpyRNG or int or float or list(int) or list(float) or None) – (optional) 2D matrix of size shape_kernel describing the weights
- delay_kernel (ndarray or NumpyRNG or int or float or list(int) or list(float) or None) – (optional) 2D matrix of size shape_kernel describing the delays
- shape_common (tuple(int,int)) – (optional) 2D shape of common coordinate system (for both pre and post, usually the input image sizes)
- pre_sample_steps_in_post (tuple(int,int)) – (optional) Sampling steps/jumps for pre pop \(\Leftrightarrow\) \((\mathsf{step}_x, \mathsf{step}_y)\)
- pre_start_coords_in_post (tuple(int,int)) – (optional) Starting row/col for pre sampling \(\Leftrightarrow\) \((\mathsf{offset}_x, \mathsf{offset}_y)\)
- post_sample_steps_in_pre (tuple(int,int)) – (optional) Sampling steps/jumps for post pop \(\Leftrightarrow\) \((\mathsf{step}_x, \mathsf{step}_y)\)
- post_start_coords_in_pre (tuple(int,int)) – (optional) Starting row/col for post sampling \(\Leftrightarrow\) \((\mathsf{offset}_x, \mathsf{offset}_y)\)
- safe (bool) – Whether to check that weights and delays have valid values. If False, this check is skipped.
- space (Space) – Currently ignored; for future compatibility.
- verbose (bool) – Whether to output extra information about the connectivity to a CSV file
- callback (callable) – (ignored)
-
spynnaker8.
StaticSynapse
¶ alias of
spynnaker8.models.synapse_dynamics.synapse_dynamics_static.SynapseDynamicsStatic
-
spynnaker8.
STDPMechanism
¶ alias of
spynnaker8.models.synapse_dynamics.synapse_dynamics_stdp.SynapseDynamicsSTDP
-
spynnaker8.
AdditiveWeightDependence
¶ alias of
spynnaker8.models.synapse_dynamics.weight_dependence.weight_dependence_additive.WeightDependenceAdditive
-
spynnaker8.
MultiplicativeWeightDependence
¶ alias of
spynnaker8.models.synapse_dynamics.weight_dependence.weight_dependence_multiplicative.WeightDependenceMultiplicative
-
spynnaker8.
SpikePairRule
¶ alias of
spynnaker8.models.synapse_dynamics.timing_dependence.timing_dependence_spike_pair.TimingDependenceSpikePair
-
spynnaker8.
StructuralMechanismStatic
¶ alias of
spynnaker8.models.synapse_dynamics.synapse_dynamics_structural_static.SynapseDynamicsStructuralStatic
-
spynnaker8.
StructuralMechanismSTDP
¶ alias of
spynnaker8.models.synapse_dynamics.synapse_dynamics_structural_stdp.SynapseDynamicsStructuralSTDP
-
class
spynnaker8.
LastNeuronSelection
(spike_buffer_size=64)[source]¶ Bases:
spynnaker.pyNN.models.neuron.structural_plasticity.synaptogenesis.partner_selection.abstract_partner_selection.AbstractPartnerSelection
Partner selection that picks a random source neuron from the neurons that spiked in the last timestep
Parameters: spike_buffer_size – The size of the buffer for holding spikes -
get_parameter_names
()[source]¶ Return the names of the parameters supported by this rule
Return type: iterable(str)
-
get_parameters_sdram_usage_in_bytes
()[source]¶ Get the amount of SDRAM used by the parameters of this rule
Return type: str
-
vertex_executable_suffix
¶ The suffix to be appended to the vertex executable for this rule
Return type: str
-
write_parameters
(spec)[source]¶ Write the parameters of the rule to the spec
Parameters: spec (DataSpecificationGenerator) –
-
-
class
spynnaker8.
RandomSelection
[source]¶ Bases:
spynnaker.pyNN.models.neuron.structural_plasticity.synaptogenesis.partner_selection.abstract_partner_selection.AbstractPartnerSelection
Partner selection that picks a random source neuron from all sources
-
get_parameter_names
()[source]¶ Return the names of the parameters supported by this rule
Return type: iterable(str)
-
get_parameters_sdram_usage_in_bytes
()[source]¶ Get the amount of SDRAM used by the parameters of this rule
Return type: str
-
vertex_executable_suffix
¶ The suffix to be appended to the vertex executable for this rule
Return type: str
-
write_parameters
(spec)[source]¶ Write the parameters of the rule to the spec
Parameters: spec (DataSpecificationGenerator) –
-
-
class
spynnaker8.
DistanceDependentFormation
(grid=(16, 16), p_form_forward=0.16, sigma_form_forward=2.5, p_form_lateral=1.0, sigma_form_lateral=1.0)[source]¶ Bases:
spynnaker.pyNN.models.neuron.structural_plasticity.synaptogenesis.formation.abstract_formation.AbstractFormation
Formation rule that depends on the physical distance between neurons
Parameters: - grid (tuple(int,int) or list(int) or ndarray(int)) – (x, y) dimensions of the grid of distance
- p_form_forward (float) – The peak probability of formation on feed-forward connections
- sigma_form_forward (float) – The spread of probability with distance of formation on feed-forward connections
- p_form_lateral (float) – The peak probability of formation on lateral connections
- sigma_form_lateral (float) – The spread of probability with distance of formation on lateral connections
-
distance
(x0, x1, metric)[source]¶ Compute the distance between points x0 and x1 place on the grid using periodic boundary conditions.
Parameters: Returns: the distance
Return type:
-
generate_distance_probability_array
(probability, sigma)[source]¶ Generate the exponentially decaying probability LUTs.
Parameters: Returns: distance-dependent probabilities
Return type:
-
get_parameter_names
()[source]¶ Return the names of the parameters supported by this rule
Return type: iterable(str)
-
get_parameters_sdram_usage_in_bytes
()[source]¶ Get the amount of SDRAM used by the parameters of this rule
Return type: int
-
vertex_executable_suffix
¶ The suffix to be appended to the vertex executable for this rule
Return type: str
-
write_parameters
(spec)[source]¶ Write the parameters of the rule to the spec
Parameters: spec (DataSpecificationGenerator) –
-
class
spynnaker8.
RandomByWeightElimination
(threshold, prob_elim_depressed=0.0245, prob_elim_potentiated=0.00013600000000000003)[source]¶ Bases:
spynnaker.pyNN.models.neuron.structural_plasticity.synaptogenesis.elimination.abstract_elimination.AbstractElimination
Elimination Rule that depends on the weight of a synapse
Parameters: - threshold (float) – Below this weight is considered depression, above or equal to this weight is considered potentiation (or the static weight of the connection on static weight connections)
- prob_elim_depressed (float) – The probability of elimination if the weight has been depressed (ignored on static weight connections)
- prob_elim_potentiated (float) – The probability of elimination of the weight has been potentiated or has not changed (and also used on static weight connections)
-
get_parameter_names
()[source]¶ Return the names of the parameters supported by this rule
Return type: iterable(str)
-
get_parameters_sdram_usage_in_bytes
()[source]¶ Get the amount of SDRAM used by the parameters of this rule
Return type: int
-
vertex_executable_suffix
¶ The suffix to be appended to the vertex executable for this rule
Return type: str
-
write_parameters
(spec, weight_scale)[source]¶ Write the parameters of the rule to the spec
Parameters: - spec (DataSpecificationGenerator) –
- weight_scale (float) –
-
spynnaker8.
IF_cond_exp
¶ alias of
spynnaker.pyNN.models.neuron.builds.if_cond_exp_base.IFCondExpBase
-
spynnaker8.
IF_curr_exp
¶ alias of
spynnaker.pyNN.models.neuron.builds.if_curr_exp_base.IFCurrExpBase
-
spynnaker8.
IF_curr_alpha
¶ alias of
spynnaker.pyNN.models.neuron.builds.if_curr_alpha.IFCurrAlpha
-
spynnaker8.
IF_curr_delta
¶ alias of
spynnaker.pyNN.models.neuron.builds.if_curr_delta.IFCurrDelta
-
spynnaker8.
Izhikevich
¶ alias of
spynnaker.pyNN.models.neuron.builds.izk_curr_exp_base.IzkCurrExpBase
-
class
spynnaker8.
SpikeSourceArray
(spike_times=None)[source]¶ Bases:
spynnaker.pyNN.models.abstract_pynn_model.AbstractPyNNModel
-
create_vertex
(n_neurons, label, constraints)[source]¶ Create a vertex for a population of the model
Parameters: - n_neurons (int) – The number of neurons in the population
- label (str) – The label to give to the vertex
- constraints (list(AbstractConstraint) or None) – A list of constraints to give to the vertex, or None
Returns: An application vertex for the population
Return type:
-
default_population_parameters
= {}¶
-
-
class
spynnaker8.
SpikeSourcePoisson
(rate=1.0, start=0, duration=None)[source]¶ Bases:
spynnaker.pyNN.models.abstract_pynn_model.AbstractPyNNModel
-
create_vertex
(n_neurons, label, constraints, seed, max_rate)[source]¶ Create a vertex for a population of the model
Parameters: - n_neurons (int) – The number of neurons in the population
- label (str) – The label to give to the vertex
- constraints (list(AbstractConstraint) or None) – A list of constraints to give to the vertex, or None
Returns: An application vertex for the population
Return type:
-
default_population_parameters
= {'max_rate': None, 'seed': None}¶
-
-
class
spynnaker8.
Assembly
(*populations, **kwargs)[source]¶ Bases:
pyNN.common.populations.Assembly
A group of neurons, may be heterogeneous, in contrast to a Population where all the neurons are of the same type.
Parameters: - populations (Population or PopulationView) – the populations or views to form the assembly out of
- kwargs – may contain label (a string describing the assembly)
Create an Assembly of Populations and/or PopulationViews.
-
class
spynnaker8.
Population
(size, cellclass, cellparams=None, structure=None, initial_values=None, label=None, constraints=None, additional_parameters=None)[source]¶ Bases:
spynnaker.pyNN.models.pynn_population_common.PyNNPopulationCommon
,spynnaker8.models.recorder.Recorder
,spynnaker8.models.populations.population_base.PopulationBase
PyNN 0.8/0.9 population object.
Parameters: - size (int) – The number of neurons in the population
- cellclass (type or AbstractPyNNModel) – The implementation of the individual neurons.
- cellparams (dict) – Parameters to pass to
cellclass
if it is a class to instantiate. - structure (BaseStructure) –
- initial_values (dict(str,float)) – Initial values of state variables
- label (str) – A label for the population
- constraints (list(AbstractConstraint)) – Any constraints on how the population is deployed to SpiNNaker.
- additional_parameters (dict(str, ..)) – Additional parameters to pass to the vertex creation function.
-
can_record
(variable)[source]¶ Determine whether variable can be recorded from this population.
Parameters: variable (str) – The variable to answer the question about Return type: bool
-
celltype
¶ Implements the PyNN expected celltype property
Returns: The celltype this property has been set to Return type: AbstractPyNNModel
-
static
create
(cellclass, cellparams=None, n=1)[source]¶ Pass through method to the constructor defined by PyNN. Create
n
cells all of the same type. Returns a Population object.Parameters: Returns: A New Population
Return type:
-
describe
(template='population_default.txt', engine='default')[source]¶ Returns a human-readable description of the population.
The output may be customized by specifying a different template together with an associated template engine (see
pyNN.descriptions
).If template is None, then a dictionary containing the template context will be returned.
Parameters: Return type:
-
find_units
(variable)[source]¶ Get the units of a variable
Parameters: variable (str) – The name of the variable Returns: The units of the variable Return type: str
-
get_data
(variables='all', gather=True, clear=False, annotations=None)[source]¶ Return a Neo Block containing the data (spikes, state variables) recorded from the Assembly.
Parameters: - variables (str or list(str)) – either a single variable name or a list of variable names. Variables must have been previously recorded, otherwise an Exception will be raised.
- gather (bool) –
Whether to collect data from all MPI nodes or just the current node.
Note
This is irrelevant on sPyNNaker, which always behaves as if this parameter is True.
- clear (bool) – Whether recorded data will be deleted from the Assembly.
- annotations (dict(str, ..)) – annotations to put on the neo block
Return type:
-
get_data_by_indexes
(variables, indexes, clear=False, annotations=None)[source]¶ Return a Neo Block containing the data (spikes, state variables) recorded from the Assembly.
Parameters: - variables (str or list(str)) – either a single variable name or a list of variable names. Variables must have been previously recorded, otherwise an Exception will be raised.
- indexes (list(int)) – List of neuron indexes to include in the
data. Clearly only neurons recording will actually have any data.
If None will be taken as all recording as in
get_data()
- clear (bool) – Whether recorded data will be deleted.
- annotations (dict(str, ..)) – annotations to put on the neo block
Return type:
-
get_initial_value
(variable, selector=None)[source]¶ See
AbstractPopulationInitializable.get_initial_value()
-
get_spike_counts
(gather=True)[source]¶ Return the number of spikes for each neuron.
Return type: ndarray
-
initialize
(**kwargs)[source]¶ Set initial values of state variables, e.g. the membrane potential. Values passed to
initialize()
may be:- single numeric values (all neurons set to the same value), or
RandomDistribution
objects, or- lists / arrays of numbers of the same size as the population mapping functions, where a mapping function accepts a single argument (the cell index) and returns a single number.
Values should be expressed in the standard PyNN units (i.e. millivolts, nanoamps, milliseconds, microsiemens, nanofarads, event per second).
Examples:
p.initialize(v=-70.0) p.initialize(v=rand_distr, gsyn_exc=0.0) p.initialize(v=lambda i: -65 + i / 10.0)
-
positions
¶ Return the position array for structured populations.
Returns: a 2D array, one row per cell. Each row is three long, for X,Y,Z Return type: ndarray
-
record
(variables, to_file=None, sampling_interval=None, indexes=None)[source]¶ Record the specified variable or variables for all cells in the Population or view.
Parameters: - variables (str or list(str)) – either a single variable name or a list of variable names. For a given celltype class, celltype.recordable contains a list of variables that can be recorded for that celltype.
- to_file (io or rawio or str) – a file to automatically record to (optional).
write_data()
will be automatically called when sim.end() is called. - sampling_interval (int) – a value in milliseconds, and an integer multiple of the simulation timestep.
- indexes (None or list(int)) – The indexes of neurons to record from. This is non-standard PyNN and equivalent to creating a view with these indexes and asking the View to record.
-
sample
(n, rng=None)[source]¶ Randomly sample n cells from the Population, and return a PopulationView object.
Parameters: Return type:
-
set
(**parameters)[source]¶ Set parameters of this population.
Parameters: parameters – The parameters to set.
-
set_initial_value
(variable, value, selector=None)[source]¶ See
AbstractPopulationInitializable.set_initial_value()
-
spinnaker_get_data
(variable)[source]¶ Public accessor for getting data as a numpy array, instead of the neo based object
Parameters: variable (str or list(str)) – either a single variable name or a list of variable names. Variables must have been previously recorded, otherwise an Exception will be raised. Returns: array of the data Return type: ndarray
-
write_data
(io, variables='all', gather=True, clear=False, annotations=None)[source]¶ Write recorded data to file, using one of the file formats supported by Neo.
Parameters: - io (io or rawio or str) – a Neo IO instance, or a string for where to put a neo instance
- variables (str or list(str)) – either a single variable name or a list of variable names. Variables must have been previously recorded, otherwise an Exception will be raised.
- gather (bool) –
Whether to bring all relevant data together.
Note
SpiNNaker always gathers.
- clear (bool) – clears the storage data if set to true after reading it back
- annotations (dict(str, ..)) – annotations to put on the neo block
-
class
spynnaker8.
PopulationView
(parent, selector, label=None)[source]¶ Bases:
spynnaker8.models.populations.population_base.PopulationBase
A view of a subset of neurons within a
Population
.In most ways, Populations and PopulationViews have the same behaviour, i.e., they can be recorded, connected with Projections, etc. It should be noted that any changes to neurons in a PopulationView will be reflected in the parent Population and vice versa.
It is possible to have views of views.
Note
Selector to Id is actually handled by
AbstractSized
.Parameters: - parent (Population or PopulationView) – the population or view to make the view from
- selector (None or slice or int or list(bool) or list(int) or ndarray(bool) or ndarray(int)) –
a slice or numpy mask array. The mask array should either be a boolean array (ideally) of the same size as the parent, or an integer array containing cell indices, i.e. if p.size == 5 then:
PopulationView(p, array([False, False, True, False, True])) PopulationView(p, array([2, 4])) PopulationView(p, slice(2, 5, 2))
will all create the same view.
- label (str) – A label for the view
-
all_cells
¶ An array containing the cell IDs of all neurons in the Population (all MPI nodes).
Return type: list(IDMixin)
-
can_record
(variable)[source]¶ Determine whether variable can be recorded from this population.
Return type: bool
-
celltype
¶ The type of neurons making up the underlying Population.
Return type: AbstractPyNNModel
-
conductance_based
¶ Indicates whether the post-synaptic response is modelled as a change in conductance or a change in current.
Return type: bool
-
describe
(template='populationview_default.txt', engine='default')[source]¶ Returns a human-readable description of the population view.
The output may be customized by specifying a different template together with an associated template engine (see pyNN.descriptions).
If template is None, then a dictionary containing the template context will be returned.
Parameters: Return type:
-
find_units
(variable)[source]¶ Get the units of a variable
Warning
NO PyNN description of this method.
Parameters: variable (str) – The name of the variable Returns: The units of the variable Return type: str
-
get
(parameter_names, gather=False, simplify=True)[source]¶ Get the values of the given parameters for every local cell in the population, or, if gather=True, for all cells in the population.
Values will be expressed in the standard PyNN units (i.e. millivolts, nanoamps, milliseconds, microsiemens, nanofarads, event per second).
-
get_data
(variables='all', gather=True, clear=False, annotations=None)[source]¶ Return a Neo Block containing the data(spikes, state variables) recorded from the Population.
Parameters: - variables (str or list(str)) – Either a single variable name or a list of variable names. Variables must have been previously recorded, otherwise an Exception will be raised.
- gather (bool) –
For parallel simulators, if gather is True, all data will be gathered to all nodes and the Neo Block will contain data from all nodes. Otherwise, the Neo Block will contain only data from the cells simulated on the local node.
Note
SpiNNaker always gathers.
- clear (bool) – If True, recorded data will be deleted from the Population.
- annotations (dict(str, ..)) – annotations to put on the neo block
Return type:
-
get_spike_counts
(gather=True)[source]¶ Returns a dict containing the number of spikes for each neuron.
The dict keys are neuron IDs, not indices.
Note
Implementation of this method is different to Population as the Populations uses PyNN 7 version of the get_spikes method which does not support indexes.
Note
SpiNNaker always gathers.
Return type: dict(int,int)
-
grandparent
¶ Returns the parent Population at the root of the tree (since the immediate parent may itself be a PopulationView).
The name “grandparent” is of course a little misleading, as it could be just the parent, or the great, great, great, …, grandparent.
Return type: Population
-
id_to_index
(id)[source]¶ Given the ID(s) of cell(s) in the PopulationView, return its / their index / indices(order in the PopulationView).
assert pv.id_to_index(pv[3]) == 3
-
index_in_grandparent
(indices)[source]¶ Given an array of indices, return the indices in the parent population at the root of the tree.
-
initial_values
¶ A dict containing the initial values of the state variables.
Return type: dict(str, ..)
-
initialize
(**initial_values)[source]¶ Set initial values of state variables, e.g. the membrane potential. Values passed to
initialize()
may be:- single numeric values (all neurons set to the same value), or
RandomDistribution
objects, or- lists / arrays of numbers of the same size as the population mapping functions, where a mapping function accepts a single argument (the cell index) and returns a single number.
Values should be expressed in the standard PyNN units( i.e. millivolts, nanoamps, milliseconds, microsiemens, nanofarads, event per second).
Examples:
p.initialize(v=-70.0) p.initialize(v=rand_distr, gsyn_exc=0.0) p.initialize(v=lambda i: -65 + i / 10.0)
-
mask
¶ The selector mask that was used to create this view.
Return type: None or slice or int or list(bool) or list(int) or ndarray(bool) or ndarray(int)
-
parent
¶ A reference to the parent Population (that this is a view of).
Return type: Population
-
record
(variables, to_file=None, sampling_interval=None)[source]¶ Record the specified variable or variables for all cells in the Population or view.
Parameters: - variables (str or list(str)) – either a single variable name, or a list of variable
names, or
all
to record everything. For a given celltype class, celltype.recordable contains a list of variables that can be recorded for that celltype. - to_file (io or rawio or str) – If specified, should be a Neo IO instance and
write_data()
will be automatically called when sim.end() is called. - sampling_interval (int) – should be a value in milliseconds, and an integer multiple of the simulation timestep.
- variables (str or list(str)) – either a single variable name, or a list of variable
names, or
-
sample
(n, rng=None)[source]¶ Randomly sample n cells from the Population view, and return a new PopulationView object.
Parameters: Return type:
-
set
(**parameters)[source]¶ Set one or more parameters for every cell in the population. Values passed to set() may be:
- single values,
RandomDistribution
objects, or- lists / arrays of values of the same size as the population mapping functions, where a mapping function accepts a single argument (the cell index) and returns a single value.
Here, a “single value” may be either a single number or a list / array of numbers (e.g. for spike times).
Values should be expressed in the standard PyNN units (i.e. millivolts, nanoamps, milliseconds, microsiemens, nanofarads, event per second).
Examples:
p.set(tau_m=20.0, v_rest=-65). p.set(spike_times=[0.3, 0.7, 0.9, 1.4]) p.set(cm=rand_distr, tau_m=lambda i: 10 + i / 10.0)
-
write_data
(io, variables='all', gather=True, clear=False, annotations=None)[source]¶ Write recorded data to file, using one of the file formats supported by Neo.
Parameters: - io (io or rawio or str) – a Neo IO instance
- variables (str or list(str)) – either a single variable name or a list of variable names. These must have been previously recorded, otherwise an Exception will be raised.
- gather (bool) –
For parallel simulators, if this is True, all data will be gathered to the master node and a single output file created there. Otherwise, a file will be written on each node, containing only data from the cells simulated on that node.
Note
SpiNNaker always gathers.
- clear (bool) – If this is True, recorded data will be deleted from the Population.
- annotations (dict(str, ..)) – should be a dict containing simple data types such as numbers and strings. The contents will be written into the output data file as metadata.
-
spynnaker8.
SpiNNakerProjection
¶ alias of
spynnaker8.models.projection.Projection
-
spynnaker8.
end
(_=True)[source]¶ Cleans up the SpiNNaker machine and software
Parameters: _ – was named compatible_output, which we don’t care about, so is a non-existent parameter Return type: None
-
spynnaker8.
setup
(timestep=0.1, min_delay='auto', max_delay='auto', graph_label=None, database_socket_addresses=None, extra_algorithm_xml_paths=None, extra_mapping_inputs=None, extra_mapping_algorithms=None, extra_pre_run_algorithms=None, extra_post_run_algorithms=None, extra_load_algorithms=None, time_scale_factor=None, n_chips_required=None, n_boards_required=None, **extra_params)[source]¶ The main method needed to be called to make the PyNN 0.8 setup. Needs to be called before any other function
Parameters: - timestep (float) – the time step of the simulations
- min_delay (float or str) – the min delay of the simulation
- max_delay (float or str) – the max delay of the simulation
- graph_label (str or None) – the label for the graph
- database_socket_addresses (iterable(SocketAddress)) – the sockets used by external devices for the database notification protocol
- extra_algorithm_xml_paths (list(str) or None) – list of paths to where other XML are located
- extra_mapping_inputs (dict(str, Any) or None) – other inputs used by the mapping process
- extra_mapping_algorithms (list(str) or None) – other algorithms to be used by the mapping process
- extra_pre_run_algorithms (list(str) or None) – extra algorithms to use before a run
- extra_post_run_algorithms (list(str) or None) – extra algorithms to use after a run
- extra_load_algorithms (list(str) or None) – extra algorithms to use within the loading phase
- time_scale_factor (int or None) – multiplicative factor to the machine time step (does not affect the neuron models accuracy)
- n_chips_required (int or None) – Deprecated! Use n_boards_required instead. Must be None if n_boards_required specified.
- n_boards_required (int or None) – if you need to be allocated a machine (for spalloc) before building your graph, then fill this in with a general idea of the number of boards you need so that the spalloc system can allocate you a machine big enough for your needs.
- extra_params – other keyword argumets used to configure PyNN
Returns: MPI rank (always 0 on SpiNNaker)
Return type: Raises: ConfigurationException – if both
n_chips_required
andn_boards_required
are used.
-
spynnaker8.
run
(simtime, callbacks=None)[source]¶ The run() function advances the simulation for a given number of milliseconds, e.g.:
Parameters: - simtime (float) – time to run for (in milliseconds)
- callbacks – callbacks to run
Returns: the actual simulation time that the simulation stopped at
Return type:
-
spynnaker8.
run_until
(tstop)[source]¶ Run until a (simulation) time period has completed.
Parameters: tstop (float) – the time to stop at (in milliseconds) Returns: the actual simulation time that the simulation stopped at Return type: float
-
spynnaker8.
run_for
(simtime, callbacks=None)¶ The run() function advances the simulation for a given number of milliseconds, e.g.:
Parameters: - simtime (float) – time to run for (in milliseconds)
- callbacks – callbacks to run
Returns: the actual simulation time that the simulation stopped at
Return type:
-
spynnaker8.
num_processes
()[source]¶ The number of MPI processes.
Note
Always 1 on SpiNNaker, which doesn’t use MPI.
Returns: the number of MPI processes
-
spynnaker8.
rank
()[source]¶ The MPI rank of the current node.
Note
Always 0 on SpiNNaker, which doesn’t use MPI.
Returns: MPI rank
-
spynnaker8.
reset
(annotations=None)[source]¶ Resets the simulation to t = 0
Parameters: annotations (dict(str, ..)) – the annotations to the data objects Return type: None
-
spynnaker8.
set_number_of_neurons_per_core
(neuron_type, max_permitted)[source]¶ Sets a ceiling on the number of neurons of a given type that can be placed on a single core.
Parameters: Return type:
-
spynnaker8.
get_projections_data
(projection_data)[source]¶ Parameters: projection_data (dict(PyNNProjectionCommon, list(int) or tuple(int) or None)) – the projection to attributes mapping Returns: a extracted data object with get method for getting the data Return type: ExtractedData
-
spynnaker8.
Projection
(presynaptic_population, postsynaptic_population, connector, synapse_type=None, source=None, receptor_type='excitatory', space=None, label=None)[source]¶ Used to support PEP 8 spelling correctly
Parameters: - presynaptic_population (Population) – the source pop
- postsynaptic_population (Population) – the dest pop
- connector (AbstractConnector) – the connector type
- synapse_type (AbstractStaticSynapseDynamics) – the synapse type
- source (None) – Unsupported; must be None
- receptor_type (str) – the receptor type
- space (Space or None) – the space object
- label (str or None) – the label
Returns: a projection object for SpiNNaker
Return type: Projection
-
spynnaker8.
get_current_time
()[source]¶ Gets the time within the simulation
Returns: returns the current time
-
spynnaker8.
create
(cellclass, cellparams=None, n=1)[source]¶ Builds a population with certain params
Parameters: Return type:
-
spynnaker8.
connect
(pre, post, weight=0.0, delay=None, receptor_type=None, p=1, rng=None)[source]¶ Builds a projection
Parameters: - pre (Population) – source pop
- post (Population) – destination pop
- weight (float) – weight of the connections
- delay (float) – the delay of the connections
- receptor_type (str) – excitatory / inhibitory
- p (float) – probability
- rng (NumpyRNG) – random number generator
Return type:
-
spynnaker8.
get_time_step
()[source]¶ The integration time step
Returns: get the time step of the simulation (in ms)
-
spynnaker8.
get_min_delay
()[source]¶ The minimum allowed synaptic delay; delays will be clamped to be at least this.
Returns: returns the min delay of the simulation
-
spynnaker8.
get_max_delay
()[source]¶ The maximum allowed synaptic delay; delays will be clamped to be at most this.
Returns: returns the max delay of the simulation
-
spynnaker8.
initialize
(cells, **initial_values)[source]¶ Sets cells to be initialised to the given values
Parameters: - cells (Population or PopulationView or Assembly) – the cells to change params on
- initial_values – the params and their values to change
Return type:
-
spynnaker8.
list_standard_models
()[source]¶ Return a list of all the StandardCellType classes available for this simulator.
Return type: list(str)
-
spynnaker8.
num_processes
()[source] The number of MPI processes.
Note
Always 1 on SpiNNaker, which doesn’t use MPI.
Returns: the number of MPI processes
-
spynnaker8.
record
(variables, source, filename, sampling_interval=None, annotations=None)[source]¶ Sets variables to be recorded.
Parameters: - variables (str or list(str)) – may be either a single variable name or a list of variable names. For a given celltype class, celltype.recordable contains a list of variables that can be recorded for that celltype.
- source (Population or PopulationView) – where to record from
- filename (str) – file name to write data to
- sampling_interval – how often to sample the recording, not ignored so far
- annotations (dict(str, ..)) – the annotations to data writers
Returns: neo object
Return type:
-
spynnaker8.
record_v
(source, filename)[source]¶ Deprecated method for getting voltage. This is not documented in the public facing API.
Parameters: - source (Population or PopulationView or Assembly) – the population / view / assembly to record
- filename (str) – the neo file to write to
Return type:
-
spynnaker8.
record_gsyn
(source, filename)[source]¶ Deprecated method for getting both types of gsyn. This is not documented in the public facing API
Parameters: - source (Population or PopulationView or Assembly) – the population / view / assembly to record
- filename (str) – the neo file to write to
Return type: